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1. Let L : K be a finite Galois extension. Take x P L and assume that the elements σpxq are all
distinct for σ P GalpL : Kq. Show: L “ Kpxq.

Solution: This is a straightforward application of the Galois correspondence. We have that
K Ď Kpxq Ď L, so that Kpxq corresponds to the subgroup Hx ď G :“ GalpL : Kq consi-
sting of those σ P G fixing the whole Kpxq. Such a σ would then fix x, and by hypothesis
only IdL does. Then Kpxq “ LHx “ LtIdLu “ L and we are done.

Another proof: notice that the minimal polynomial f of x over K needs to have degree
equal to |GalpL : Kq|, because applying the automorphisms of GalpL : Kq we obtain
|GalpL : Kq| distinct roots of f by hypothesis. Then rKpxq : Ks “ |GalpL : Kq| “ rL : Ks

implying Kpxq “ L.

2. For p an odd prime number, let ζ :“ e2πi{p. Denote by Ci a cyclic group of order i.

(a) Show: rQpζq : Qs “ p ´ 1. (Hint: Use Eisenstein criterion.)

(b) Show: GalpQpζq : Qq – Cp´1.

Solution: (a) We have ζp “ 1, so ζ is a zero of the polynomial Xp ´ 1. From the decompo-
sition

Xp
´ 1 “ pX ´ 1q

`

Xp´1
` Xp´2

` . . . ` X ` 1
˘

it follows that ζ is a zero of the polynomial Φp :“ Xp´1 ` . . . ` X ` 1 P ZrXs.

We now want to show that Φp is irreducible. From this it will follow that Φp is the minimal
polynomial of ζ over Q, and thus that rQpζq : Qs “ degΦp “ p ´ 1.

Next we will prove the irreducibility of Φp. With the substitution X Ø Y ` 1,

ΦppXq “
Xp ´ 1

X ´ 1
“

pY ` 1qp ´ 1

Y
“

p
ÿ

k“1

ˆ

p

k

˙

Y k´1.

So ΦppY q is a normalized polynomial of degree p´ 1, and the k-th coefficient is
`

p
k`1

˘

. Thus
ΦppY q fulfills the requirements of the Eisenstein criterion for the prime number p, namely:

- The highest coefficient is 1, i.e. not divisible by p,

- for 0 ď k ď p ´ 2,
`

p
k`1

˘

is divisible by p, so all lower coefficients are divisible by p,

- the constant term is
`

p
1

˘

“ p, i.e. not divisible by p2.

(b) The p-th roots of unity form a group that is isomorphic to Cp. The restriction

GalpQpζq : Qq Ñ Autpxζyq, σ ÞÑ σ|
xζy

is well-defined, since all primitive roots of unity according to (a) have the same minimal
polynomial. It is further injective, since an element of the Galois group is uniquely determi-
ned by the image of ζ . Furthermore, we know from Algebra I that Aut pCpq – Cp´1. Thus,
GalpQpζq : Qq and Autpxζyq have the same cardinality and the restriction is therefore also
surjective, i.e. a group isomorphism.
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3. Let Lf be the splitting field of f “ X5 ´ 1 over Q.

(a) Determine Gal pLf : Qq.

(b) Determine all intermediate fields M with Q Ĺ M Ĺ Lf .

(c) Let ζ :“ e
2πi
5 . Determine the minimum polynomial of ζ ` ζ4 over Q.

Solution: (a) Because f “ pX ´1q p1 ` X ` X2 ` X3 ` X4q and because pX ´1q P QrXs

and p1 ` X ` X2 ` X3 ` X4q are irreducible, |Gal pLf : Qq| “ 4. Let ζ :“ e
2πi
5 . For 1 ď

i ď 4, let αi : Lf Ñ Lf with αi : ζ ÞÑ ζ i be four different automorphisms. Because
ord pα2q “ 4, we have Gal pLf : Qq “ xα2y, i.e. Gal pLf : Qq – C4.

(b) Note that the group C4 has only one non-trivial subgroup, so the only non-trivial subgroup
of Gal pLf : Qq is xα2

2y “ xα4y. Thus M0 :“ L
xα4y

f is the only non-trivial intermediate
field, and because α4 : ζ Ø ζ4 and α4 : ζ2 Ø ζ3 (i.e. the elements are being swapped),
M0 “ Q pζ ` ζ4q “ Q pζ2 ` ζ3q. Note that ζ5 “ 1, and that pζ ` ζ4q

2
“ ζ2 ` 2 ` ζ3 and

pζ2 ` ζ3q
2

“ ζ4 ` 2 ` ζ .

(c) Since Q pζ ` ζ4q “ Q pζ2 ` ζ3q and rQ pζ ` ζ4q : Qs “ 2, the minimum polynomial of
ζ ` ζ4 over Q has, in addition to the zero ζ ` ζ4, also the zero ζ2 ` ζ3, and thus

`

X ´
`

ζ ` ζ4
˘˘ `

X ´
`

ζ2 ` ζ3
˘˘

“

X2
´ Xpζ ` ζ2 ` ζ3 ` ζ4

loooooooomoooooooon

“´1

q ` pζ ` ζ2 ` ζ3 ` ζ4
loooooooomoooooooon

“´1

q “ ´1 ` X ` X2

is the minimum polynomial of ζ ` ζ4 (and also that of ζ2 ` ζ3 ) over Q.

4. For n ě 3 let ζ P C be the primitive n-th root of unity. Prove:

Qpζq XR “ Qpζ ` ζ´1
q

and determine the degree rQpζq : Qpζ ` ζ´1qs.

Solution: Let K :“ QpζqXR. Since ζ´1 and ζ are complex conjugates of each other, we have
ζ ` ζ´1 P R, soQpζ ` ζ´1q Ă K. Since ζ R R we have K Ĺ Qpζq and thus rQpζq : Ks ě 2.
On the other hand is ζ a zero of the quadratic polynomial X2 ´ pζ ` ζ´1qX ` 1 P Qpζ `

ζ´1qrXs, so rQpζq : Qpζ ` ζ´1qs “ 2 and hence Qpζ ` ζ´1q “ K.

5. Let K be a field, where the characteristic of K is not 2 and let fpxq P Krxs, such that the
zeros of f in a splitting field are α1, . . . , αn. Let

δ “
ź

1ďiăjďn

pαi ´ αjq.

The discriminant ∆pfq of f is defined as

∆pfq “ δ2.

Prove:
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(a) ∆pfq P K.

(b) ∆pfq “ 0 if and only if it has a multiple zero.

(c) If ∆pfq ‰ 0, then ∆pfq is a perfect square in K if and only if the Galois group of f ,
interpreted as a group of permutations of the zeros of f , is contained in the alternating
group An.

Solution:

(a) Let σ P Sn be a permutation acting by permutations on the zeros αj of f . We can write
σ as a product of permutations of order two. Note that a cycle of order two, say pi1 j1q

for i1 ă j1 ď n, sends δ to

pi1 j1
qpδq “

ź

1ďiăjďn

pαpi1 j1qi ´ αpi1 j1qjq

“ pαj1 ´ αi1q ¨
ź

1ďiăjďn
pi,jq‰pi1,j1q

pαi ´ αjq

“ ´
ź

1ďiăjďn

pαi ´ αjq,

so if σ is applied to δ it sends δ to ˘δ; the sign being ` if σ is an even permutation and
´ if σ is odd. Therefore ∆pfq “ δ2 remains unchanged by any permutation in Sn, so it
lies in K.

(b) This follows from the definition; if there were a multiple zero, one of the terms in the
product of δ would be zero.

(c) Let G be the Galois group of f , considered as a subgroup of Sn for some integer n. If
∆pfq is a perfect square in K, then δ P K, so δ is fixed by G. We have seen in part
(a) that odd permutations change the sign of δ to ´δ, and since charpKq ‰ 2, we have
δ ‰ ´δ. Hence all permutations in G are even, so G ď An.
On the other hand, if G ď An then for all σ P G, σpδq “ δ, so δ P K, and thus ∆pfq is
a perfect square in K.
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