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Solutions Exercise sheet 10

1. Let L : K be a finite Galois extension. Take x € L and assume that the elements o (x) are all
distinct for o € Gal(L : K). Show: L = K(x).

Solution: This is a straightforward application of the Galois correspondence. We have that
K < K(z) € L, so that K (x) corresponds to the subgroup H, < G := Gal(L : K) consi-
sting of those ¢ € G fixing the whole K (z). Such a o would then fix z, and by hypothesis
only Id;, does. Then K (x) = L+ = L1142} = [ and we are done.

Another proof: notice that the minimal polynomial f of x over K needs to have degree
equal to |Gal(L : K)|, because applying the automorphisms of Gal(L : K) we obtain
| Gal(L : K)|distinct roots of f by hypothesis. Then [K(z) : K] =|Gal(L : K)| = [L : K]
implying K (x) = L.

2. For p an odd prime number, let ¢ := ¢>™/?. Denote by C; a cyclic group of order i.

(a) Show: [Q(() : Q] = p — 1. (Hint: Use Eisenstein criterion.)
(b) Show: Gal(Q(¢) : Q) = C,_;.
Solution: (a) We have (P = 1, so ( is a zero of the polynomial X?” — 1. From the decompo-
sition
XP—1=X-1)X""+ X2+ . +X+1)
it follows that ( is a zero of the polynomial @, := XP~1 + ... + X + 1 € Z[X].

We now want to show that @, is irreducible. From this it will follow that &, is the minimal
polynomial of ¢ over Q, and thus that [Q(() : Q] = deg®, = p — 1.

Next we will prove the irreducibility of ¢,,. With the substitution X < Y + 1,

px) = = L é @Y“‘

X -1
So &,(Y') is a normalized polynomial of degree p — 1, and the k-th coefficient is ( kﬁl). Thus
@, (Y") fulfills the requirements of the Eisenstein criterion for the prime number p, namely:
- The highest coefficient is 1, i.e. not divisible by p,
-for0 <k <p—2,(,%,) is divisible by p, so all lower coefficients are divisible by p,
- the constant term is (¥) = p, i.e. not divisible by p?.

(b) The p-th roots of unity form a group that is isomorphic to C,,. The restriction

Gal(Q(¢) : Q) — Aut({()), o0 = ol ¢,

is well-defined, since all primitive roots of unity according to (a) have the same minimal
polynomial. It is further injective, since an element of the Galois group is uniquely determi-
ned by the image of (. Furthermore, we know from Algebra I that Aut (C},) =~ C,_,. Thus,
Gal(Q(¢) : Q) and Aut({()) have the same cardinality and the restriction is therefore also
surjective, i.e. a group isomorphism.



3. Let Ly be the splitting field of f = X° — 1 over Q.

(a) Determine Gal (Ly : Q).
(b) Determine all intermediate fields M with Q & M < Ly.

(¢) Let(:= %" . Determine the minimum polynomial of ¢ + ¢* over Q.

Solution: (a) Because f = (X —1) (1 + X + X? + X® + X*) and because (X — 1) € Q[ X]
and (1 4+ X 4+ X2 + X3 + X*) are irreducible, |Gal (L; : Q)| = 4. Let ¢ := e . Forl <
it < 4,letoy; : Ly — Ly with oy : ¢ — (' be four different automorphisms. Because
ord (az) = 4, we have Gal (Ly : Q) = (an),i.e. Gal (Ly : Q) = C.

(b) Note that the group C} has only one non-trivial subgroup, so the only non-trivial subgroup
of Gal (L;: Q) is (a2) = (ay). Thus M, := L%‘W is the only non-trivial intermediate
field, and because ay : ¢ <> (* and oy : (? < (7 (i.e. the elements are being swapped),
My = Q(C+¢*) = Q¢+ ¢3). Note that ¢* = 1, and that (¢ + ¢*)? = (2 + 2+ ¢? and
G+ =t +2+¢

(c) Since Q (¢ +¢*) = Q(¢* + ¢3) and [Q (¢ + ¢*) : Q] = 2, the minimum polynomial of
¢ + ¢* over Q has, in addition to the zero  + (%, also the zero (2 + (3, and thus

(X = ((+) (¥ =(2+¢) =
X=X+ CH+CHO)+((+C+ O+ ) =1+ X + X7

——1 =1

is the minimum polynomial of ¢ + ¢* (and also that of ¢? + (3 ) over Q.

4. Forn > 3 let ¢ € C be the primitive n-th root of unity. Prove:

Q) NR=Q(C+¢)
and determine the degree [Q(¢) : Q(¢ + ¢71)].

Solution: Let K := Q(¢) nR. Since (! and ( are complex conjugates of each other, we have
(+(reR,s0Q(C+¢ ') c K. Since ¢ ¢ R we have K < Q(¢) and thus [Q(¢) : K| = 2.
On the other hand is ¢ a zero of the quadratic polynomial X2 — (¢ + ()X + 1€ Q(¢ +

¢THIXT. 50 [Q(C) : Q(C + ¢71)] = 2 and hence Q(¢ + () = K.

5. Let K be a field, where the characteristic of K is not 2 and let f(z) € K[z], such that the

zeros of f in a splitting field are . . ., ;. Let
0= H (O-/i — O[j).
1<i<j<n

The discriminant A(f) of f is defined as
Alf) = 8

Prove:



(a)
(b)
(c)

A(f) e K.
A(f) = 0if and only if it has a multiple zero.

If A(f) # 0, then A(f) is a perfect square in K if and only if the Galois group of f,
interpreted as a group of permutations of the zeros of f, is contained in the alternating
group A,,.

Solution:

(a)

(b)

(©)

Let o € S,, be a permutation acting by permutations on the zeros a;; of f. We can write
o as a product of permutations of order two. Note that a cycle of order two, say (i’ ;)
for i’ < j/ < n, sends ¢ to

@6 = ] (awimi—awm)

1<i<j<n
1<i<j<n
(6,5)#(.3")
== 1_[ (ai - aj)ﬂ
1<i<j<n

so if o is applied to ¢ it sends d to +4; the sign being + if o is an even permutation and
— if o is odd. Therefore A(f) = §% remains unchanged by any permutation in S,,, so it
lies in K.

This follows from the definition; if there were a multiple zero, one of the terms in the
product of 4 would be zero.

Let GG be the Galois group of f, considered as a subgroup of S,, for some integer n. If
A(f) is a perfect square in K, then § € K, so ¢ is fixed by G. We have seen in part
(a) that odd permutations change the sign of § to —d, and since char(K) # 2, we have
0 # —0. Hence all permutations in G are even, so G < A,,.

On the other hand, if G < A, then for all 0 € G, 0(J) = 0, s0 § € K, and thus A(f) is
a perfect square in K.



