D-MATH

Algebra II FS 2024

Prof. Dr. Ozlem Imamoglu

Solutions Exercise sheet 11

1. The Sylvester matrix of two polynomials f(X) := 37" ;X" and g(X) := >}7_ a; X7 over
aring R is given by the (m + n) x (m + n) matrix

Qm +vv e ... a1 a 0 ... 0
0 am ... ... ... a1 a
0
O ... 0 an ... ... ... a1 a
Sylvf,g = bn e e bl bo O e 0. O
0 b, ... ... b by - '
. i . 0
: . . .. .0
0O ... ... 0 b, ... ... b b
The determinant of the Sylvester matrix is called the resultant of f and g and is denoted by
Res f.9 € R.
(a) Compute the resultant of the polynomials X* — X + 1 and X2 + X + 3.

(b)

(©)

(d)

(e)

¢y

For two arbitrary polynomials f, g over a ring R prove that
Res, r = (—1)™" Resy,

For K a field, let f,g € K[X] be two polynomials. Prove: the resultant of f and g is
equal to zero if and only if the two polynomials have a common root.

For polynomials f(X) = a,, [ [;Z,(X — ;) and g(X) = b, [ [;_, (X — j3;) prove:

n

Resyg = ay, - by HH(%’ — 5.

i=1 j=1

Let f(X) =ag+ a1 X + -+ apn_1 X™ ' + X™ be a polynomial over a ring R. Let
A(f) denote its discriminant (see exercise sheet 10). Show that

m(m—1)

A(f) = (-1

where [’ denotes the derivative of f.

RGS £if's

Determine a general formula for the discriminant of an arbitrary polynomial of degree
2,3 and 4.

Solution:



(a) By definition of the resultant, we get

(b)

(©)

(d)

10 -1 1 0
01 0 -1 1
Resys_xi1x2ixs3 =det [1 1 3 0 0]=55
01 1 3 0
00 1 1 3

Let f, g be arbitrary polynomials over a ring R. Then we obtain Sylv, ; from Sylv
by swapping two rows m - n times. Every time we swap two rows, the determinant of
Sylv; , changes sign, so we obtain

det(Sylv, ;) = (=1)"" det(Sylv; ).

Write f(X) = >" a; X", g = 3" b; X7 and denote by Sylv  , the Sylvester matrix. For
t>mandi < 0seta; := 0andfor j >nandj < 0setb;:=0.

Then Res;, = 0 if and only if the rows of Sylv, . are linearly dependent. This is equi-
valent to the following: there exist an element (cy,...,¢,,d,...,dy) € K™T™\{0}
such that for every 1 < j < m + n we have

n m
Z Cilmtj—i = Z dianrifj-
i=1 i=1

This is equivalent to

mi:n (Zn: Ciam+j—i> X = Ti” (i dibn-i-i—j) Xmrnd, (D
=1 =1 \i=1

=1

Writing m — j + ¢ = k, we can rewrite the left hand side of (1) as

ZCiCLkX]H_n_i = (i Can_i> : <Z aka> = U- f
i=1 k

ik

Similarly, writing n + ¢ — j = k, the right hand side of (1) is equal to

i=1 k

ik

Hence (1) holds if and only if there exist u,v € K[X] not both zero, with deg(u) <
n,deg(v) < m and

u-f=v-g. (2)
Then deg(u) = deg(v)+deg(g) —deg(f) < m+n—n = m, and similarly deg(v) < n.
Thus, comparing the degrees of the polynomials in equation (2) we obtain that this is
equivalent to f and g having a common root.
Write f(X) = 3" a; X", g = " b;X7. Then we can express det(Sylv, ) in terms of
A, by, {vi}i, {B;};. The polynomials f and g have a common zero if and only if there



(e

exist 7, j with a; = B3;,1.e. oy — 3; = 0. Since Resy, = 0 if and only if a; — 3; = 0 by
part (c), we have that o; — 3; divides Resy, forall1 <i<m,1 <j <n.

By looking at the definition of the Sylvester matrix for f and g, we see that a,, divides
the first n rows, and b,, divides the rows n+1to n+m. Thus ay, -0 [ [[2, [ T/— (i —B;)
divides Resy 4.

Now, note that

] o | et 0 o 0
0 1 | et :
: 0
0 ... 0 1 . | T
det(Sylv, ) = a0 T H?:l B; 0 0 :
0 1 II?:1¢% :
0
: PN . 0
0O ... ... 0 1 - o o I]?:Iﬁ%

so by looking at the upper- and lower-triangular submatrices of Sylv,  which have
ones on the diagonal, we obtain that

m n
Resyg = ap, - by [ [ai + - +ap -0 [ [ 87

i=1 j=1
Hence we obtain part (d).

Write f(X) = [[*,(X — ;). From Exercise sheet 10, question 5 recall the definition

of the discriminant of f:

1<i<j<n

Taking the derivative of f, we get

which implies

If we write f/(X) =b- H;TZ:_II(X — ;) then by part (d),

m m—1 m

Resﬁff = b- ] (ai - 6]) = Hf/<ai>7

i= j=1 i=1



®)

and hence

Consider f(X) := X% + bX + c. Then
1 b c
SylVﬁf/ == 2 b 0 3
0 2 b

so that det(Sylv, ;1) = b* + 4c — 2b° = 4¢ — b7, and thus A(f) = b* — 4c.
Similarly for a polynomial of degree 3 and 4, say f(X) := X?® + 0X? + ¢X + d and
g(X) := X*+0X3+ cX?+dX + e, one can compute the determinant of the Sylvester

matrix to get
A(f) = b*c? — 4c® — 4b3d — 27d* + 18bcd,

and

A(g) =256€* — 192bde® — 128¢%¢? + 144cde — 27d* + 144b%ce® — 6b*d*e — 80bc*de
+ 18bcd® + 16¢te — 4c*d* — 27b*e? + 18b°cde — 4b>d® — 4b*cPe + b*c*d?* .

2. Let n be a positive integer, and P € Z[X] a monic irreducible factor of X" — 1 € Q[X].
Suppose that  is a root of P.

(a)

(b)

(c)

(d)

(e)

Show that for each k € Z-, there exists a unique polynomial Ry € Z[X] such that
deg(Ry) < deg(P) and P(¢*) = Ry (¢). Prove that {Ry|k € Z=o} is a finite set. We
define

a := sup{|u| : u is a coefficient of some Ry}

Show that for £ = p a prime, p divides all coefficients of 1, and that when p > a one
has R, = 0 (Hint: P(C?) = P(¢?) — P(()).

Deduce that if all primes dividing some positive integer m are strictly greater then a,
then P(¢"™) = 0.

Prove that if 7 and n are coprime, then P(¢") = 0 (Hint: Consider the quantity m =
r+n Hpéa,ph“ D).

Recall the definition of n-th cyclotomic polynomial @, for n € Z-(: we take W,, < C
to be the set of primitive n-th roots of unity, and define

G, (X) = [ (X —u).

xeWn



®

Prove the following equality for n € Zi-y:

[ @a(x)=x" -1,

0<d|n

and deduce that @,, € Z[ X | for every n.

Prove that the n-th cyclotomic polynomial is irreducible. (Hint: Take ¢ := exp(2mi/n)
and P its minimal polynomial over Q). Check that P satisfies the required hypothesis to
deduce that ¢,,(X)|P (using parts (a)-(d)). Then irreducibility of P together with part
(e) allow you to conclude.)

Solution: Recall that for a monic polynomial f € Z[X]| we know that f is irreducible in
Z|X] if and only if it is irreducible in Q[X].

(a)

(b)

Since P is monic and irreducible in Z[X], it is also irreducible in Q[.X], so that
Q(¢) = Q[X]/(P(X)) is an algebraic extension of () of degree deg(P), and the ele-
ments 1,(, ..., (%8") are linearly independent. Then P(¢*) € Q(¢) cannot be expres-
sed in more then one way as P(C*) = Ry (¢) with Ry, € Z[X] of degree < deg(P),
and we only have to check existence. This is a special case of proving that for each
feZ[X]wehave f(¢) = by+bi{+ -+ baeg(p)—1¢?8") ! for some b; € Z, which is
easily proven by induction on deg( f): the statement is trivial for all deg(f) < deg(P);
for bigger degree, we see that the degree of f can be lowered (up to equivalence modulo
P) by substituting the maximal power X¢(")¥ of X in f with X (X" — P(X)),
which has degree strictly smaller then deg(P) + a as P is monic, so that the inductive
hypothesis can be applied.

(More simply, one can notice that Z[X] is a unique factorization domain, and that
Euclidean division of f by P can be performed (as in Q[ X]), so that R, (X) is nothing
but the residue of the division of R(X*) by P(X).)

Since ¢* = ¢" for n|k — h, the set {C* : k € Z,} is finite, and so is the set of the R}’s.

Notice that for f € Z[ X ] one has that f(X?)— f(X)? is divisible by p. Indeed, we write
f= Zj‘:o A\; X7 and consider the multinomial coefficient for a partition into positive
integers t = > . ¢;:

t ¢! N [t =1\ [t—t; — 1y ts1 + ts
(+) L €7,
.ot bl ty) t t t3 te 1

which counts the number of partitions of a set of ¢ elements into subsets of ¢, ¢, ..., ¢,
elements, and we have

CURFE D WD Y (R b YRR

eo+--+e;j=p j
O<e;<p
5 S
=D = AN - Y ( p ) [T x7.
j=0 o+ te;=p €0y...,6€5 =0

O<e;<p

By Fermat’s little theorem we have p|\; — )\5»’ for each 7. Moreover, each multinomial
coefficient appearing in the second sum is divisible by p, because the definition in terms
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(c)

(d)

(e)

®

of factorials in () makes it clear that none of the e; has p as a factor, so that p does not
cancel out while simplifying the fraction, which belongs to Z. Hence p|f (X?)— f(X)?.
We can then write P((?) = P(¢?) — P(¢)? = pQ(() for some Q(X) € Z[X], and by
what we proved in the previous point we can write Q(() = R¢(() for some polynomial
Ry € Z|X] of degree strictly smaller than deg(P). This gives R,(() = P((?) =
pRo(¢), and by uniqueness of R, we can conclude that R, = pRg € pZ[X].

If p > a, then the absolute values of the coefficients of 2, are non-negative multiples
of p, and by definition of a they need to be zero, so that 12, = 0 in this case.

This is an easy induction on the number s of primes (counted with multiplicity) dividing
m. One can indeed write m = [[7_, p; for some primes p; > a. For s = 1 this is just
the previous point, because R,, = 0 means P((?*) = 0. More in general, by inductive
hypothesis we can assume that P(¢P*"?s=1) = (, and apply the previous point with
¢PrPs=1 (which is a root of P) instead of ¢ to get P((¢P*Ps=1)Ps) = 0.

Let m = r + nnpga’m p. For ¢ < a a prime, we see that ¢ either divides r or
n Hp <appr P> 80 that ¢ does not divide m and by previous point we get P (¢™) = 0.
But (" = 1 by hypothesis (because P|X"™ — 1), so that (" = (" and we get P(¢") = 0.

Let v, = [[,- din ®,. Since a complex number belongs to W, if and only if it has
multiplicative order k, all the W} s are disjoint. Then ~,, has distinct roots, and its set
of roots is Uo <dn W4. On the other hand, the roots of X™ — 1 are also all distinct: they
are indeed the n distinct complex numbers exp(27ik/n) fora = 0,...,n — 1. Itis then
easy to see that the two polynomials have indeed the same roots, since a n-th root of
unity has order d dividing n, and primitive d-th roots of unity are n-th roots of unity
for d|n. As both v, and @,, are monic, unique factorization in Q[X] gives v,, = @, as
desired.

We then prove that the coefficients of the @,, are integer by induction on n. Forn = 1
we have @, = X — 1 € Z|X]. For n > 1, suppose that ¢, € Z[X] for all £ < n. Then

X" —1
P S
H P4(X)
0<d|n
d+n

and since the denominator lies in Z[ X | by inductive hypothesis, we can conclude that
&,, € Z[ X]. Indeed, ¥,, needs necessarily to lie in Q[ X] (else, for [ the minimal degree
of a coefficient of @, not lying in () and m the minimal degree of a non-zero coefficients
of the denominator, one would get that the coefficient of degree [ +m in X" — 1 would
not lie in QQ, contradiction). We can then write the monic polynomial @, as i@n for
some primitive polynomial ©,, € Z[X]|, but then Gauss’s lemma tells us that X™ — 1
equals Cll times a primitive polynomial, and the only possibility is d = +1, which
implies that &,, € Z[ X].

¢ = exp(2mi/n) satisfies both its minimal polynomial P and X" — 1, so that P| X" — 1.
Being X™ — 1 and P monic we necessarily have P € Z[X| by Gauss’s lemma. Then
W, ={¢": 0 <r < n,(r,n) = 1}, so that by part (d) we get P(z) = 0 for each
x € W, and by definition of ¢, we obtain &, | P. This is a divisibility relation between
two polynomials in Q[ X ], hence an equality as P is irreducible in Q[X]. In particular,
the cyclotomic polynomial @,, is itself irreducible.
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Let L be a splitting field of the polynomial X% — 5 over Q). Determine all intermediate fields
of L : Q together with their inclusions.

Solution: Since C is algebraically closed, we can assume L to be embedded in C. Let a be
the positive real sixth root of 5. Let { be a primitive third root of unity in C. For 1 < ¢ < 6 let
a; = a-(—C)" . Thenal—5 = a®- (—()% -5 = 0,s0ay, . .., ag are the six different zeros
of X% —5.Thus L = Q(ay,...,as) < Q(a,(), and because a; = a and —2 = —@ =(,
even L = Q(a, ().

For 1 < i < 6 we have [Q(q;) : Q] = 6, since X°® — 5 is irreducible according to the
Eisenstein criterion. Because ¢ ¢ Q(a) < Risalso [L : Q(a)] = 2, and thus [L : Q] = [L :
Q(a)] - [Q(a) : Q] = 12. In particular, Gal(L : Q) also has order 12.

In the following, we consider Gal(L : Q) as a subgroup of Ss given by the embedding
induced by a; — 1.

Since L : @ is normal, the restriction o of the complex conjugation to L is an element of
Gal(L : Q). Specifically, o corresponds to the permutation (26)(35).

Since X° — 5 is irreducible, Gal(L : Q) operates transitively on its zeros; hence there exists
p € Gal(L : Q) with p(a;) = as. Because o(a;) = a1, we have (po)(a;) = ap. Since o
swaps the two zeros ¢ and ¢? of the irreducible polynomial X2 + X + 1 and p swaps or fixes
them as Q-homomorphisms, we can therefore assume (by replacing p by po if necessary)
without loss of generality, that p(¢) = ¢. Then p(a;) = p(a- (—¢)"™") = a- (—¢)’, so p has
the representation (123456).

The calculation opo™! = (26)(35)(123456)(26)(35) = (654321) = p~! now shows
that

{p,oy={p,o]o®=p°=10p07" = p~") = Dy,
so the subgroup generated by p and o has at least order 12, and since | Gal(L : Q)| = 12, we
obtain Gal(L : Q) = {p,0) = Ds.

We now make a list of all subgroups of Gal(L : Q) = Dg (we leave the detailed verification
to the reader); normal subgroups are underlined:



{o,p")

{op?, p*) (op*, p*)

{p {o,p*) {op, p*)

_

Gal(L : Q)

From this we now deduce the set-up of the intermediate fields; the Galois correspondence
assigns to a subgroup H < Gal(L : Q) the fixed field L with the extension degree [L” :

Q] =

|Gal(LQ) _ 12 .
|H| |H|[*

LW =L

[CaLQ) _

Itis o(a) = a, thus Q(a) = L. In addition, [Q(a) : Q] = 6 = 1%, ie. L7 = Q(a).

Analogously, (op?)(a¢?) = a¢?, ie. Q(a¢?) < L7 In addition, [Q(ac?) : Q] =
. o 2
6 = %, 1.€. L< P = Q(CLCQ)
Analogously, (0p*)(a¢) = a(, i.e. Q(al) < LP". Furthermore, [Q(a¢) : Q] = 6 =
. 4

—‘<;54>‘, ie. L9 = Q(al).

It is o(a?) = p*(a®) = a2, so Q(a®) < L"), In addition, a? is a zero of the poly-

nomial X3 — 5 which is irreducible over Q, so [Q(a?) : Q] = 3 = o] < 5 and thus

L") = Q(a?).

Analogously, (0p?)(a2¢) = p*(a?C) = a2, thus Q(a2¢) < LP*#”. Moreover, a?( is

a zero of the polynomial X3 — 5 irreducible over Q, so [Q(a*C) : Q] = 3 = ﬁ

and thus L% — Q(a2().

Analogously, (cp*)(a2C?) = p*(a®¢?) = a®¢?, ie. Q(a®¢?) < L?"+"). Furthermore,
2( 2 is a zero of the polynomial X3 — 5 irreducible over Q, thus [Q(a?¢?) : Q] = 3 =

m and thus L<U’D %) Q(CLQCQ).

Itis p(¢) = ¢, thus Q(¢) = L. Furthermore, [Q(¢) : Q] = 2 = \< >‘ thus Q(¢) =
L.

Itis o(a®) = p2(a®) = a®, so Q(a®) L™ Moreover a® is a zero of the irreducible
polynomial X% — 5 over Q, so [Q(a®) : Q] = 2 = \<o p2>‘ and thus Q(a?) = L{0#™.
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e Ttis p*(a®) = a® and p*(¢) = ¢, thus Q(a®,¢) © LY. Because ¢ ¢ Q(a®) < R is
[Q(a*,¢) : Q] = [Q(a*,) : Q(a?)][Q(a”) : Q] = 4, thus [Q(a®,() : Q] = 5; and
therefore L = Q(a?, ¢).

« Analogously, p*(a?) = a2 and p*(¢) = ¢, thus Q(a?,¢) < LY. Because ¢ ¢ Q(a?) ¢
Ris [Q(a* () : Q] = [Q(a* () : Q(a*)][Q(a?) : Q] = 6, thus [Q(a?, () : Q] = |<;1§>\
and therefore L = Q(a?, ().

s (0p*)(a¢) = —a(? and therefore (op%)(a((—C(?)) = a(¢—¢?) because (op*)? = 11;s0
Q(a(¢—C¢?))is © L") In addition, a(¢ —¢?) is a zero of the polynomial X®+ 135, and
this is irreducible over () according to the Eisenstein criterion with respect to the prime
number 5. Therefore, [Q(a(¢ —(?)) : Q] = 6 = ~2 and thus L7 = Q(a(( —¢2)).

[Kop®)l
¢ Analogously, (0p°)(a) = —a(C and thus (gp°)(a(l —¢)) = a(1 — ¢) because (7p°)? =
1; therefore Q(a(1 — ¢)) = L{“?”. In addition, a(1 — ¢) is a zero of the polynomial
X6 + 135. Therefore, [Q(a(1 —()): Q] =6 = ﬁ and thus L7 = Q(a(1 — ¢)).

¢ Analogously, (cp)(a) = —a(? and therefore (op)(a(l — ¢?)) = a(1 — ¢?) because
(o0p)? = 1z; thus Q(a(l — ¢?))is < L?. In addition, a(1 — ¢?) is a zero of the
polynomial X% + 135. Therefore, [Q(a(1 — ¢?)) : Q] = 6 = 2 and thus L7” =

[<op)l
Q(a(l —¢?)).
s L0 = 00 0 L9 = Q(a’,€) n Qa(1 - ¢2) 5 (a1 - ) = 3a%(C — 7).
Because [L<Up’p2> Q] = % = 2and (¢ — ¢*) ¢ Q = R therefore Liopr®) —

Q(a’(¢ = ¢?)).

In total, we obtain the following towers of fields:

Remark. An intermediate field above is underlined if the corresponding subgroup of Gal(L :
Q) is normal.



