Solutions Exercise sheet 11

1. The Sylvester matrix of two polynomials $f(X):=\sum_{i=0}^{m} a_{i} X^{i}$ and $g(X):=\sum_{j=0}^{n} a_{j} X^{j}$ over a ring R is given by the $(m+n) \times(m+n)$ matrix

$$
\operatorname{Sylv}_{f, g}:=\left(\begin{array}{ccccccccc}
a_{m} & \ldots & \ldots & \ldots & a_{1} & a_{0} & 0 & \ldots & 0 \\
0 & a_{m} & \ldots & \ldots & \ldots & a_{1} & a_{0} & \ddots & \vdots \\
\vdots & \ddots & \ddots & & & & \ddots & \ddots & 0 \\
0 & \ldots & 0 & a_{m} & \ldots & \ldots & \ldots & a_{1} & a_{0} \\
b_{n} & \ldots & \ldots & b_{1} & b_{0} & 0 & \ldots & \ldots & 0 \\
0 & b_{n} & \ldots & \ldots & b_{1} & b_{0} & \ddots & & \vdots \\
\vdots & \ddots & \ddots & & & \ddots & \ddots & \ddots & 0 \\
\vdots & & \ddots & \ddots & & & \ddots & \ddots & 0 \\
0 & \ldots & \ldots & 0 & b_{n} & \ldots & \ldots & b_{1} & b_{0}
\end{array}\right) .
$$

The determinant of the Sylvester matrix is called the resultant of f and g and is denoted by $\operatorname{Res}_{f, g} \in R$.
(a) Compute the resultant of the polynomials $X^{3}-X+1$ and $X^{2}+X+3$.
(b) For two arbitrary polynomials f, g over a ring R prove that

$$
\operatorname{Res}_{g, f}=(-1)^{m n} \operatorname{Res}_{f, g}
$$

(c) For K a field, let $f, g \in K[X]$ be two polynomials. Prove: the resultant of f and g is equal to zero if and only if the two polynomials have a common root.
(d) For polynomials $f(X)=a_{m} \prod_{i=1}^{m}\left(X-\alpha_{i}\right)$ and $g(X)=b_{n} \prod_{j=1}^{n}\left(X-\beta_{j}\right)$ prove:

$$
\operatorname{Res}_{f, g}=a_{m}^{n} \cdot b_{n}^{m} \cdot \prod_{i=1}^{m} \prod_{j=1}^{n}\left(\alpha_{i}-\beta_{j}\right)
$$

(e) Let $f(X)=a_{0}+a_{1} X+\cdots+a_{m-1} X^{m-1}+X^{m}$ be a polynomial over a ring R. Let $\Delta(f)$ denote its discriminant (see exercise sheet 10). Show that

$$
\Delta(f)=(-1)^{\frac{m(m-1)}{2}} \operatorname{Res}_{f, f^{\prime}},
$$

where f^{\prime} denotes the derivative of f.
(f) Determine a general formula for the discriminant of an arbitrary polynomial of degree 2,3 and 4 .

Solution:

(a) By definition of the resultant, we get

$$
\operatorname{Res}_{X^{3}-X+1, X^{2}+X+3}=\operatorname{det}\left(\begin{array}{ccccc}
1 & 0 & -1 & 1 & 0 \\
0 & 1 & 0 & -1 & 1 \\
1 & 1 & 3 & 0 & 0 \\
0 & 1 & 1 & 3 & 0 \\
0 & 0 & 1 & 1 & 3
\end{array}\right)=55 .
$$

(b) Let f, g be arbitrary polynomials over a ring R. Then we obtain $\operatorname{Sylv}_{g, f}$ from $\operatorname{Sylv}_{f, g}$ by swapping two rows $m \cdot n$ times. Every time we swap two rows, the determinant of $\operatorname{Sylv}_{f, g}$ changes sign, so we obtain

$$
\operatorname{det}\left(\operatorname{Sylv}_{g, f}\right)=(-1)^{m n} \operatorname{det}\left(\operatorname{Sylv}_{f, g}\right)
$$

(c) Write $f(X)=\sum^{m} a_{i} X^{i}, g=\sum^{n} b_{j} X^{j}$ and denote by $\operatorname{Sylv}_{f, g}$ the Sylvester matrix. For $i>m$ and $i<0$ set $a_{i}:=0$ and for $j>n$ and $j<0$ set $b_{j}:=0$.
Then $\operatorname{Res}_{f, g}=0$ if and only if the rows of $\operatorname{Sylv}_{g, f}$ are linearly dependent. This is equivalent to the following: there exist an element $\left(c_{1}, \ldots, c_{n}, d_{1}, \ldots, d_{m}\right) \in K^{m+n} \backslash\{\underline{0}\}$ such that for every $1 \leqslant j \leqslant m+n$ we have

$$
\sum_{i=1}^{n} c_{i} a_{m+j-i}=\sum_{i=1}^{m} d_{i} b_{n+i-j}
$$

This is equivalent to

$$
\begin{equation*}
\sum_{j=1}^{m+n}\left(\sum_{i=1}^{n} c_{i} a_{m+j-i}\right) X^{m+n-j}=\sum_{j=1}^{m+n}\left(\sum_{i=1}^{m} d_{i} b_{n+i-j}\right) X^{m+n-j} . \tag{1}
\end{equation*}
$$

Writing $m-j+i=k$, we can rewrite the left hand side of (1) as

$$
\sum_{i, k} c_{i} a_{k} X^{k+n-i}=\left(\sum_{i=1}^{n} c_{i} X^{n-i}\right) \cdot\left(\sum_{k} a_{k} X^{k}\right)=: u \cdot f .
$$

Similarly, writing $n+i-j=k$, the right hand side of (1) is equal to

$$
\sum_{i, k} d_{i} b_{k} X^{k+m-i}=\left(\sum_{i=1}^{m} d_{i} X^{m-i}\right) \cdot\left(\sum_{k} b_{k} X^{k}\right)=: v \cdot g .
$$

Hence (1) holds if and only if there exist $u, v \in K[X]$ not both zero, with $\operatorname{deg}(u)<$ $n, \operatorname{deg}(v)<m$ and

$$
\begin{equation*}
u \cdot f=v \cdot g . \tag{2}
\end{equation*}
$$

Then $\operatorname{deg}(u)=\operatorname{deg}(v)+\operatorname{deg}(g)-\operatorname{deg}(f)<m+n-n=m$, and similarly $\operatorname{deg}(v)<n$. Thus, comparing the degrees of the polynomials in equation (2) we obtain that this is equivalent to f and g having a common root.
(d) Write $f(X)=\sum^{m} a_{i} X^{i}, g=\sum^{n} b_{j} X^{j}$. Then we can express $\operatorname{det}\left(\operatorname{Sylv}_{f, g}\right)$ in terms of $a_{m}, b_{n},\left\{\alpha_{i}\right\}_{i},\left\{\beta_{j}\right\}_{j}$. The polynomials f and g have a common zero if and only if there
exist i, j with $\alpha_{i}=\beta_{j}$, i.e. $\alpha_{i}-\beta_{j}=0$. Since $\operatorname{Res}_{f, g}=0$ if and only if $\alpha_{i}-\beta_{j}=0$ by part (c), we have that $\alpha_{i}-\beta_{j}$ divides $\operatorname{Res}_{f, g}$ for all $1 \leqslant i \leqslant m, 1 \leqslant j \leqslant n$.
By looking at the definition of the Sylvester matrix for f and g, we see that a_{m} divides the first n rows, and b_{n} divides the rows $n+1$ to $n+m$. Thus $a_{m}^{n} \cdot b_{n}^{m} \cdot \prod_{i=1}^{m} \prod_{j=1}^{n}\left(\alpha_{i}-\beta_{j}\right)$ divides $\operatorname{Res}_{f, g}$.
Now, note that
$\operatorname{det}\left(\operatorname{Sylv}_{f, g}\right)=a_{m}^{n} \cdot b_{n}^{m}\left(\begin{array}{ccccccccc}1 & \ldots & \ldots & \ldots & \ldots & \prod_{i=1}^{m} \alpha_{i} & 0 & \ldots & 0 \\ 0 & 1 & \ldots & \ldots & \ldots & \ldots & \prod_{i=1}^{m} \alpha_{i} & \ddots & \vdots \\ \vdots & \ddots & \ddots & & & & & \ddots & 0 \\ 0 & \ldots & 0 & 1 & \ldots & \ldots & \ldots & \prod_{i=1}^{m} \alpha_{i} & \\ 1 & \ldots & \ldots & \ldots & \prod_{j=1}^{n} \beta_{j} & 0 & \ldots & \ldots & 0 \\ 0 & 1 & \ldots & \ldots & \ldots & \prod_{j=1}^{n} \beta_{j} & \ddots & & \vdots \\ \vdots & \ddots & \ddots & & & & \ddots & \ddots & 0 \\ \vdots & & \ddots & \ddots & & & & \ddots & 0 \\ 0 & \ldots & \ldots & 0 & 1 & \ldots & \ldots & \ldots & \prod_{j=1}^{n} \beta_{j}\end{array}\right)$,
so by looking at the upper- and lower-triangular submatrices of $\operatorname{Sylv}_{f, g}$ which have ones on the diagonal, we obtain that

$$
\operatorname{Res}_{f, g}=a_{m}^{n} \cdot b_{n}^{m} \prod_{i=1}^{m} \alpha_{i}^{n}+\cdots+a_{m}^{n} \cdot b_{n}^{m} \prod_{j=1}^{n} \beta_{j}^{m} .
$$

Hence we obtain part (d).
(e) Write $f(X)=\prod_{i=1}^{m}\left(X-\alpha_{i}\right)$. From Exercise sheet 10, question 5 recall the definition of the discriminant of f :

$$
\Delta(f)=\prod_{1 \leqslant i<j \leqslant n}\left(\alpha_{i}-\alpha_{j}\right)^{2} .
$$

Taking the derivative of f, we get

$$
f^{\prime}(X)=\sum_{k=1}^{m} \prod_{i \neq k}\left(X-\alpha_{i}\right),
$$

which implies

$$
f^{\prime}\left(\alpha_{j}\right)=\sum_{k=1}^{m} \prod_{i \neq k}\left(\alpha_{j}-\alpha_{i}\right)=\prod_{i \neq j}\left(\alpha_{j}-\alpha_{i}\right) .
$$

If we write $f^{\prime}(X)=b \cdot \prod_{j=1}^{m-1}\left(X-\beta_{j}\right)$ then by part (d),

$$
\operatorname{Res}_{f, f^{\prime}}=\prod_{i=1}^{m} b \cdot \prod_{j=1}^{m-1}\left(\alpha_{i}-\beta_{j}\right)=\prod_{i=1}^{m} f^{\prime}\left(\alpha_{i}\right),
$$

and hence

$$
\begin{aligned}
(-1)^{\frac{m(m-1)}{2}} \cdot \operatorname{Res}_{f, f^{\prime}} & =(-1)^{\frac{m(m-1)}{2}} \cdot \prod_{i=1}^{m} f^{\prime}\left(\alpha_{i}\right) \\
& =(-1)^{\frac{m(m-1)}{2}} \cdot \prod_{i=1}^{m} \prod_{i \neq j}\left(\alpha_{j}-\alpha_{i}\right) \\
& =\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)^{2} .
\end{aligned}
$$

(f) Consider $f(X):=X^{2}+b X+c$. Then

$$
\operatorname{Sylv}_{f, f^{\prime}}=\left(\begin{array}{ccc}
1 & b & c \\
2 & b & 0 \\
0 & 2 & b
\end{array}\right)
$$

so that $\operatorname{det}\left(\operatorname{Sylv}_{f, f^{\prime}}\right)=b^{2}+4 c-2 b^{2}=4 c-b^{2}$, and thus $\Delta(f)=b^{2}-4 c$.
Similarly for a polynomial of degree 3 and 4 , say $f(X):=X^{3}+b X^{2}+c X+d$ and $g(X):=X^{4}+b X^{3}+c X^{2}+d X+e$, one can compute the determinant of the Sylvester matrix to get

$$
\Delta(f)=b^{2} c^{2}-4 c^{3}-4 b^{3} d-27 d^{2}+18 b c d,
$$

and

$$
\begin{aligned}
\Delta(g)= & 256 e^{3}-192 b d e^{2}-128 c^{2} e^{2}+144 c d^{2} e-27 d^{4}+144 b^{2} c e^{2}-6 b^{2} d^{2} e-80 b c^{2} d e \\
& +18 b c d^{3}+16 c^{4} e-4 c^{3} d^{2}-27 b^{4} e^{2}+18 b^{3} c d e-4 b^{3} d^{3}-4 b^{2} c^{3} e+b^{2} c^{2} d^{2}
\end{aligned}
$$

2. Let n be a positive integer, and $P \in \mathbb{Z}[X]$ a monic irreducible factor of $X^{n}-1 \in \mathbb{Q}[X]$. Suppose that ζ is a root of P.
(a) Show that for each $k \in \mathbb{Z}_{\geqslant 0}$ there exists a unique polynomial $R_{k} \in \mathbb{Z}[X]$ such that $\operatorname{deg}\left(R_{k}\right)<\operatorname{deg}(P)$ and $P\left(\zeta^{k}\right)=R_{k}(\zeta)$. Prove that $\left\{R_{k} \mid k \in \mathbb{Z}_{\geqslant 0}\right\}$ is a finite set. We define

$$
a:=\sup \left\{|u|: u \text { is a coefficient of some } R_{k}\right\}
$$

(b) Show that for $k=p$ a prime, p divides all coefficients of R_{p}, and that when $p>a$ one has $R_{p}=0\left(\right.$ Hint: $\left.P\left(\zeta^{p}\right)=P\left(\zeta^{p}\right)-P(\zeta)^{p}\right)$.
(c) Deduce that if all primes dividing some positive integer m are strictly greater then a, then $P\left(\zeta^{m}\right)=0$.
(d) Prove that if r and n are coprime, then $P\left(\zeta^{r}\right)=0$ (Hint: Consider the quantity $m=$ $\left.r+n \prod_{p \leqslant a, p \nmid r} p\right)$.
(e) Recall the definition of n-th cyclotomic polynomial Φ_{n} for $n \in \mathbb{Z}_{>0}$: we take $W_{n} \subseteq \mathbb{C}$ to be the set of primitive n-th roots of unity, and define

$$
\Phi_{n}(X):=\prod_{x \in W_{n}}(X-x) .
$$

Prove the following equality for $n \in \mathbb{Z}_{>0}$:

$$
\prod_{0<d \mid n} \Phi_{d}(X)=X^{n}-1
$$

and deduce that $\Phi_{n} \in \mathbb{Z}[X]$ for every n.
(f) Prove that the n-th cyclotomic polynomial is irreducible. (Hint: Take $\zeta:=\exp (2 \pi i / n)$ and P its minimal polynomial over \mathbb{Q}. Check that P satisfies the required hypothesis to deduce that $\Phi_{n}(X) \mid P$ (using parts (a)-(d)). Then irreducibility of P together with part (e) allow you to conclude.)

Solution: Recall that for a monic polynomial $f \in \mathbb{Z}[X]$ we know that f is irreducible in $\mathbb{Z}[X]$ if and only if it is irreducible in $\mathbb{Q}[X]$.
(a) Since P is monic and irreducible in $\mathbb{Z}[X]$, it is also irreducible in $\mathbb{Q}[X]$, so that $\mathbb{Q}(\zeta) \cong \mathbb{Q}[X] /(P(X))$ is an algebraic extension of \mathbb{Q} of degree $\operatorname{deg}(P)$, and the elements $1, \zeta, \ldots, \zeta^{\operatorname{deg}(P)}$ are linearly independent. Then $P\left(\zeta^{k}\right) \in \mathbb{Q}(\zeta)$ cannot be expressed in more then one way as $P\left(\zeta^{k}\right)=R_{k}(\zeta)$ with $R_{k} \in \mathbb{Z}[X]$ of degree $<\operatorname{deg}(P)$, and we only have to check existence. This is a special case of proving that for each $f \in \mathbb{Z}[X]$ we have $f(\zeta)=b_{0}+b_{1} \zeta+\cdots+b_{\operatorname{deg}(P)-1} \zeta^{\operatorname{deg}(P)-1}$ for some $b_{i} \in \mathbb{Z}$, which is easily proven by induction on $\operatorname{deg}(f)$: the statement is trivial for all $\operatorname{deg}(f)<\operatorname{deg}(P)$; for bigger degree, we see that the degree of f can be lowered (up to equivalence modulo P) by substituting the maximal power $X^{\operatorname{deg}(P)+a}$ of X in f with $X^{a}\left(X^{\operatorname{deg}(P)}-P(X)\right)$, which has degree strictly smaller then $\operatorname{deg}(P)+a$ as P is monic, so that the inductive hypothesis can be applied.
(More simply, one can notice that $\mathbb{Z}[X]$ is a unique factorization domain, and that Euclidean division of f by P can be performed (as in $\mathbb{Q}[X]$), so that $R_{k}(X)$ is nothing but the residue of the division of $R\left(X^{k}\right)$ by $P(X)$.)
Since $\zeta^{k}=\zeta^{h}$ for $n \mid k-h$, the set $\left\{\zeta^{k}: k \in \mathbb{Z}_{\geqslant 0}\right\}$ is finite, and so is the set of the R_{k} 's.
(b) Notice that for $f \in \mathbb{Z}[X]$ one has that $f\left(X^{p}\right)-f(X)^{p}$ is divisible by p. Indeed, we write $f=\sum_{j=0}^{s} \lambda_{j} X^{j}$ and consider the multinomial coefficient for a partition into positive integers $t=\sum_{i} t_{i}$:
$(*)\binom{t}{t_{1}, \ldots, t_{s}}=\frac{t!}{t_{1}!\cdots t_{s}!}=\binom{t}{t_{1}}\binom{t-t_{1}}{t_{2}}\binom{t-t_{1}-t_{2}}{t_{3}} \cdots\binom{t_{s-1}+t_{s}}{t_{s-1}} \in \mathbb{Z}$,
which counts the number of partitions of a set of t elements into subsets of $t_{1}, t_{2}, \ldots, t_{s}$ elements, and we have

$$
\begin{aligned}
f\left(X^{p}\right)-f(X)^{p} & =\sum_{j=0}^{s} \lambda_{j} X^{j p}-\sum_{\substack{e_{0}+\ldots+e_{j}=p \\
0 \leqslant e_{j} \leqslant p}}\binom{p}{e_{0}, \ldots, e_{s}} \prod_{j}^{s}\left(\lambda_{j}\right)^{e_{j}} X^{j e_{j}} \\
& =\sum_{j=0}^{s}\left(\lambda_{j}-\lambda_{j}^{p}\right) X^{j p}-\sum_{\substack{e_{0}+\ldots+e_{j}=p \\
0 \leqslant e_{j}<p}}\binom{p}{e_{0}, \ldots, e_{s}} \prod_{j=0}^{s}\left(\lambda_{j}\right)^{e_{j}} X^{j e_{j}} .
\end{aligned}
$$

By Fermat's little theorem we have $p \mid \lambda_{j}-\lambda_{j}^{p}$ for each j. Moreover, each multinomial coefficient appearing in the second sum is divisible by p, because the definition in terms
of factorials in (*) makes it clear that none of the e_{j} has p as a factor, so that p does not cancel out while simplifying the fraction, which belongs to \mathbb{Z}. Hence $p \mid f\left(X^{p}\right)-f(X)^{p}$. We can then write $P\left(\zeta^{p}\right)=P\left(\zeta^{p}\right)-P(\zeta)^{p}=p Q(\zeta)$ for some $Q(X) \in \mathbb{Z}[X]$, and by what we proved in the previous point we can write $Q(\zeta)=R_{Q}(\zeta)$ for some polynomial $R_{Q} \in \mathbb{Z}[X]$ of degree strictly smaller than $\operatorname{deg}(P)$. This gives $R_{p}(\zeta)=P\left(\zeta^{p}\right)=$ $p R_{Q}(\zeta)$, and by uniqueness of R_{p} we can conclude that $R_{p}=p R_{Q} \in p \mathbb{Z}[X]$.
If $p>a$, then the absolute values of the coefficients of R_{p} are non-negative multiples of p, and by definition of a they need to be zero, so that $R_{p}=0$ in this case.
(c) This is an easy induction on the number s of primes (counted with multiplicity) dividing m. One can indeed write $m=\prod_{i=1}^{s} p_{i}$ for some primes $p_{i}>a$. For $s=1$ this is just the previous point, because $R_{p_{1}}=0$ means $P\left(\zeta^{p_{1}}\right)=0$. More in general, by inductive hypothesis we can assume that $P\left(\zeta^{p_{1} \cdots p_{s-1}}\right)=0$, and apply the previous point with $\zeta^{p_{1} \cdots p_{s-1}}$ (which is a root of P) instead of ζ to get $P\left(\left(\zeta^{p_{1} \cdots p_{s-1}}\right)^{p_{s}}\right)=0$.
(d) Let $m=r+n \prod_{p \leqslant a, p \nmid r} p$. For $q \leqslant a$ a prime, we see that q either divides r or $n \prod_{p \leqslant a, p \nmid r} p$, so that q does not divide m and by previous point we get $P\left(\zeta^{m}\right)=0$. But $\zeta^{n}=1$ by hypothesis (because $P \mid X^{n}-1$), so that $\zeta^{m}=\zeta^{r}$ and we get $P\left(\zeta^{r}\right)=0$.
(e) Let $\gamma_{n}=\prod_{0<d \mid n} \Phi_{d}$. Since a complex number belongs to W_{k} if and only if it has multiplicative order k, all the W_{k} 's are disjoint. Then γ_{n} has distinct roots, and its set of roots is $\bigcup_{0<d \mid n} W_{d}$. On the other hand, the roots of $X^{n}-1$ are also all distinct: they are indeed the n distinct complex numbers $\exp (2 \pi i k / n)$ for $a=0, \ldots, n-1$. It is then easy to see that the two polynomials have indeed the same roots, since a n-th root of unity has order d dividing n, and primitive d-th roots of unity are n-th roots of unity for $d \mid n$. As both γ_{n} and Φ_{n} are monic, unique factorization in $\mathbb{Q}[X]$ gives $\gamma_{n}=\Phi_{n}$ as desired.
We then prove that the coefficients of the Φ_{n} are integer by induction on n. For $n=1$ we have $\Phi_{n}=X-1 \in \mathbb{Z}[X]$. For $n>1$, suppose that $\Phi_{k} \in \mathbb{Z}[X]$ for all $k<n$. Then

$$
\Phi_{n}=\frac{X^{n}-1}{\prod_{\substack{0<d \mid n \\ d \neq n}} \Phi_{d}(X)},
$$

and since the denominator lies in $\mathbb{Z}[X]$ by inductive hypothesis, we can conclude that $\Phi_{n} \in \mathbb{Z}[X]$. Indeed, Φ_{n} needs necessarily to lie in $\mathbb{Q}[X]$ (else, for l the minimal degree of a coefficient of Φ_{n} not lying in \mathbb{Q} and m the minimal degree of a non-zero coefficients of the denominator, one would get that the coefficient of degree $l+m$ in $X^{n}-1$ would not lie in \mathbb{Q}, contradiction). We can then write the monic polynomial Φ_{n} as $\frac{1}{\mu} \Theta_{n}$ for some primitive polynomial $\Theta_{n} \in \mathbb{Z}[X]$, but then Gauss's lemma tells us that $X^{n}-1$ equals $\frac{1}{d}$ times a primitive polynomial, and the only possibility is $d= \pm 1$, which implies that $\Phi_{n} \in \mathbb{Z}[X]$.
(f) $\zeta=\exp (2 \pi i / n)$ satisfies both its minimal polynomial P and $X^{n}-1$, so that $P \mid X^{n}-1$. Being $X^{n}-1$ and P monic we necessarily have $P \in \mathbb{Z}[X]$ by Gauss's lemma. Then $W_{n}=\left\{\zeta^{r}: 0<r<n,(r, n)=1\right\}$, so that by part (d) we get $P(x)=0$ for each $x \in W_{n}$ and by definition of Φ_{n} we obtain $\Phi_{n} \mid P$. This is a divisibility relation between two polynomials in $\mathbb{Q}[X]$, hence an equality as P is irreducible in $\mathbb{Q}[X]$. In particular, the cyclotomic polynomial Φ_{n} is itself irreducible.
3. Let L be a splitting field of the polynomial $X^{6}-5$ over \mathbb{Q}. Determine all intermediate fields of $L: \mathbb{Q}$ together with their inclusions.
Solution: Since \mathbb{C} is algebraically closed, we can assume L to be embedded in \mathbb{C}. Let a be the positive real sixth root of 5 . Let ζ be a primitive third root of unity in \mathbb{C}. For $1 \leqslant i \leqslant 6$ let $a_{i}:=a \cdot(-\zeta)^{i-1}$. Then $a_{i}^{6}-5=a^{6} \cdot(-\zeta)^{6 i-6}-5=0$, so a_{1}, \ldots, a_{6} are the six different zeros of $X^{6}-5$. Thus $L=\mathbb{Q}\left(a_{1}, \ldots, a_{6}\right) \subset \mathbb{Q}(a, \zeta)$, and because $a_{1}=a$ and $-\frac{a_{2}}{a_{1}}=-\frac{a \cdot(-\zeta)}{a}=\zeta$, even $L=\mathbb{Q}(a, \zeta)$.
For $1 \leqslant i \leqslant 6$ we have $\left[\mathrm{Q}\left(a_{i}\right): \mathbb{Q}\right]=6$, since $X^{6}-5$ is irreducible according to the Eisenstein criterion. Because $\zeta \notin \mathbb{Q}(a) \subset \mathbb{R}$ is also $[L: \mathbb{Q}(a)]=2$, and thus $[L: \mathbb{Q}]=[L:$ $\mathbb{Q}(a)] \cdot[\mathbb{Q}(a): \mathbb{Q}]=12$. In particular, $\operatorname{Gal}(L: \mathbb{Q})$ also has order 12 .
In the following, we consider $\operatorname{Gal}(L: \mathbb{Q})$ as a subgroup of S_{6} given by the embedding induced by $a_{i} \mapsto i$.
Since $L: \mathbb{Q}$ is normal, the restriction σ of the complex conjugation to L is an element of $\operatorname{Gal}(L: \mathbb{Q})$. Specifically, σ corresponds to the permutation (26)(35).
Since $X^{6}-5$ is irreducible, $\operatorname{Gal}(L: \mathbb{Q})$ operates transitively on its zeros; hence there exists $\rho \in \operatorname{Gal}(L: \mathbb{Q})$ with $\rho\left(a_{1}\right)=a_{2}$. Because $\sigma\left(a_{1}\right)=a_{1}$, we have $(\rho \sigma)\left(a_{1}\right)=a_{2}$. Since σ swaps the two zeros ζ and ζ^{2} of the irreducible polynomial $X^{2}+X+1$ and ρ swaps or fixes them as \mathbb{Q}-homomorphisms, we can therefore assume (by replacing ρ by $\rho \sigma$ if necessary) without loss of generality, that $\rho(\zeta)=\zeta$. Then $\rho\left(a_{i}\right)=\rho\left(a \cdot(-\zeta)^{i-1}\right)=a \cdot(-\zeta)^{i}$, so ρ has the representation (123456).
The calculation $\sigma \rho \sigma^{-1}=(26)(35)(123456)(26)(35)=(654321)=\rho^{-1}$ now shows that

$$
\langle\rho, \sigma\rangle=\left\langle\rho, \sigma \mid \sigma^{2}=\rho^{6}=1, \sigma \rho \sigma^{-1}=\rho^{-1}\right\rangle \cong D_{6}
$$

so the subgroup generated by ρ and σ has at least order 12 , and since $|\operatorname{Gal}(L: \mathbb{Q})|=12$, we obtain $\operatorname{Gal}(L: \mathbb{Q})=\langle\rho, \sigma\rangle \cong D_{6}$.
We now make a list of all subgroups of $\operatorname{Gal}(L: \mathbb{Q}) \cong D_{6}$ (we leave the detailed verification to the reader); normal subgroups are underlined:

From this we now deduce the set-up of the intermediate fields; the Galois correspondence assigns to a subgroup $H<\operatorname{Gal}(L: \mathbb{Q})$ the fixed field L^{H} with the extension degree [L^{H} : $\mathbb{Q}]=\frac{|\operatorname{Gal}(L: Q)|}{|H|}=\frac{12}{|H|}:$

- $L^{\{1\}}=L$.
- $L^{\mathrm{Gal}(L: \mathrm{Q})}=\mathbb{Q}$.
- It is $\sigma(a)=a$, thus $\mathbb{Q}(a) \subset L^{\langle\sigma\rangle}$. In addition, $[\mathbb{Q}(a): \mathbb{Q}]=6=\frac{12}{\mid\langle\sigma\rangle}$, i.e. $L^{\langle\sigma\rangle}=\mathbb{Q}(a)$.
- Analogously, $\left(\sigma \rho^{2}\right)\left(a \zeta^{2}\right)=a \zeta^{2}$, i.e. $\mathbb{Q}\left(a \zeta^{2}\right) \subset L^{\left\langle\sigma \rho^{2}\right\rangle}$. In addition, $\left[\mathbb{Q}\left(a \zeta^{2}\right): \mathbb{Q}\right]=$ $6=\frac{12}{\left\langle\sigma \rho^{2}\right\rangle}$, i.e. $L^{\left\langle\sigma \rho^{2}\right\rangle}=\mathbb{Q}\left(a \zeta^{2}\right)$.
- Analogously, $\left(\sigma \rho^{4}\right)(a \zeta)=a \zeta$, i.e. $\mathbb{Q}(a \zeta) \subset L^{\left\langle\sigma \rho^{4}\right\rangle}$. Furthermore, $[\mathbb{Q}(a \zeta): \mathbb{Q}]=6=$ $\frac{12}{\left\langle\sigma \rho^{4}\right\rangle}$, i.e. $L^{\left\langle\sigma \rho^{4}\right\rangle}=\mathbb{Q}(a \zeta)$.
- It is $\sigma\left(a^{2}\right)=\rho^{3}\left(a^{2}\right)=a^{2}$, so $\mathbb{Q}\left(a^{2}\right) \subset L^{\left\langle\sigma, \rho^{3}\right\rangle}$. In addition, a^{2} is a zero of the polynomial $X^{3}-5$ which is irreducible over \mathbb{Q}, so $\left[\mathbb{Q}\left(a^{2}\right): \mathbb{Q}\right]=3=\frac{12}{\left\langle\sigma, \rho^{3}\right\rangle}$ and thus $L^{\left\langle\sigma, \rho^{3}\right\rangle}=\mathbb{Q}\left(a^{2}\right)$.
- Analogously, $\left(\sigma \rho^{2}\right)\left(a^{2} \zeta\right)=\rho^{3}\left(a^{2} \zeta\right)=a^{2} \zeta$, thus $\mathbb{Q}\left(a^{2} \zeta\right) \subset L^{\left\langle\sigma \rho^{2}, \rho^{3}\right\rangle}$. Moreover, $a^{2} \zeta$ is a zero of the polynomial $X^{3}-5$ irreducible over \mathbb{Q}, so $\left[\mathbb{Q}\left(a^{2} \zeta\right): \mathbb{Q}\right]=3=\frac{12}{\mid\left\langle\sigma \rho^{2}, \rho^{3}\right\rangle}$ and thus $L^{\left\langle\sigma \rho^{2}, \rho^{3}\right\rangle}=\mathbb{Q}\left(a^{2} \zeta\right)$.
- Analogously, $\left(\sigma \rho^{4}\right)\left(a^{2} \zeta^{2}\right)=\rho^{3}\left(a^{2} \zeta^{2}\right)=a^{2} \zeta^{2}$, i.e. $\mathbb{Q}\left(a^{2} \zeta^{2}\right) \subset L^{\left\langle\sigma \rho^{4}, \rho^{3}\right\rangle}$. Furthermore, $a^{2} \zeta^{2}$ is a zero of the polynomial $X^{3}-5$ irreducible over \mathbb{Q}, thus $\left[\mathbb{Q}\left(a^{2} \zeta^{2}\right): \mathbb{Q}\right]=3=$ $\frac{12}{\left\langle\sigma \rho^{4}, \rho^{3}\right\rangle \mid}$ and thus $L^{\left\langle\sigma \rho^{4}, \rho^{3}\right\rangle}=\mathbb{Q}\left(a^{2} \zeta^{2}\right)$.
- It is $\rho(\zeta)=\zeta$, thus $\mathbb{Q}(\zeta) \subset L^{\langle\rho\rangle}$. Furthermore, $[\mathbb{Q}(\zeta): \mathbb{Q}]=2=\frac{12}{\langle\rho\rangle\rangle}$, thus $\mathbb{Q}(\zeta)=$ $L^{\langle\rho\rangle}$.
- It is $\sigma\left(a^{3}\right)=\rho^{2}\left(a^{3}\right)=a^{3}$, so $\mathbb{Q}\left(a^{3}\right) \subset L^{\left\langle\sigma, \rho^{2}\right\rangle}$. Moreover, a^{3} is a zero of the irreducible polynomial $X^{2}-5$ over \mathbb{Q}, so $\left[\mathbb{Q}\left(a^{3}\right): \mathbb{Q}\right]=2=\frac{12}{\left|\left\langle\sigma, \rho^{2}\right\rangle\right|}$ and thus $\mathbb{Q}\left(a^{3}\right)=L^{\left\langle\sigma, \rho^{2}\right\rangle}$.
- It is $\rho^{2}\left(a^{3}\right)=a^{3}$ and $\rho^{2}(\zeta)=\zeta$, thus $\mathbb{Q}\left(a^{3}, \zeta\right) \subset L^{\left\langle\rho^{2}\right\rangle}$. Because $\zeta \notin \mathbb{Q}\left(a^{3}\right) \subset \mathbb{R}$ is $\left[\mathbb{Q}\left(a^{3}, \zeta\right): \mathbb{Q}\right]=\left[\mathbb{Q}\left(a^{3}, \zeta\right): \mathbb{Q}\left(a^{3}\right)\right]\left[\mathbb{Q}\left(a^{3}\right): \mathbb{Q}\right]=4$, thus $\left[\mathbb{Q}\left(a^{3}, \zeta\right): \mathbb{Q}\right]=\frac{12}{\left\langle\rho^{2}\right\rangle}$ and therefore $L^{\left\langle\rho^{2}\right\rangle}=\mathbb{Q}\left(a^{3}, \zeta\right)$.
- Analogously, $\rho^{3}\left(a^{2}\right)=a^{2}$ and $\rho^{3}(\zeta)=\zeta$, thus $\mathbb{Q}\left(a^{2}, \zeta\right) \subset L^{\left\langle\rho^{3}\right\rangle}$. Because $\zeta \notin \mathbb{Q}\left(a^{2}\right) \subset$ \mathbb{R} is $\left[\mathbb{Q}\left(a^{2}, \zeta\right): \mathbb{Q}\right]=\left[\mathbb{Q}\left(a^{2}, \zeta\right): \mathbb{Q}\left(a^{2}\right)\right]\left[\mathbb{Q}\left(a^{2}\right): \mathbb{Q}\right]=6$, thus $\left[\mathbb{Q}\left(a^{2}, \zeta\right): \mathbb{Q}\right]=\frac{12}{\left|\left\langle\rho^{3}\right\rangle\right|}$ and therefore $L^{\left\langle\rho^{3}\right\rangle}=\mathbb{Q}\left(a^{2}, \zeta\right)$.
- $\left(\sigma \rho^{3}\right)(a \zeta)=-a \zeta^{2}$ and therefore $\left(\sigma \rho^{3}\right)\left(a\left(\zeta-\zeta^{2}\right)\right)=a\left(\zeta-\zeta^{2}\right)$ because $\left(\sigma \rho^{3}\right)^{2}=1_{L}$; so $\mathrm{Q}\left(a\left(\zeta-\zeta^{2}\right)\right) i s \subset L^{\left\langle\sigma \rho^{3}\right\rangle}$. In addition, $a\left(\zeta-\zeta^{2}\right)$ is a zero of the polynomial $X^{6}+135$, and this is irreducible over \mathbb{Q} according to the Eisenstein criterion with respect to the prime number 5. Therefore, $\left[\mathbb{Q}\left(a\left(\zeta-\zeta^{2}\right)\right): \mathbb{Q}\right]=6=\frac{12}{\mid\left\langle\sigma \rho^{3}\right\rangle}$ and thus $L^{\left\langle\sigma \rho^{3}\right\rangle}=\mathbb{Q}\left(a\left(\zeta-\zeta^{2}\right)\right)$.
- Analogously, $\left(\sigma \rho^{5}\right)(a)=-a \zeta$ and thus $\left(\sigma \rho^{5}\right)(a(1-\zeta))=a(1-\zeta)$ because $\left(\sigma \rho^{5}\right)^{2}=$ 1_{L}; therefore $\mathbb{Q}(a(1-\zeta)) \subset L^{\left\langle\sigma \rho^{5}\right\rangle}$. In addition, $a(1-\zeta)$ is a zero of the polynomial $X^{6}+135$. Therefore, $[\mathbb{Q}(a(1-\zeta)): \mathbb{Q}]=6=\frac{12}{\left\langle\sigma \rho^{5}\right\rangle}$ and thus $L^{\left\langle\sigma \rho^{5}\right\rangle}=\mathbb{Q}(a(1-\zeta))$.
- Analogously, $(\sigma \rho)(a)=-a \zeta^{2}$ and therefore $(\sigma \rho)\left(a\left(1-\zeta^{2}\right)\right)=a\left(1-\zeta^{2}\right)$ because $(\sigma \rho)^{2}=1_{L}$; thus $\mathbb{Q}\left(a\left(1-\zeta^{2}\right)\right)$ is $\subset L^{\langle\sigma \rho\rangle}$. In addition, $a\left(1-\zeta^{2}\right)$ is a zero of the polynomial $X^{6}+135$. Therefore, $\left[\mathbb{Q}\left(a\left(1-\zeta^{2}\right)\right): \mathbb{Q}\right]=6=\frac{12}{\mid\langle\sigma \rho\rangle}$ and thus $L^{\langle\sigma \rho\rangle}=$ $\mathrm{Q}\left(a\left(1-\zeta^{2}\right)\right)$.
- It is $L^{\left\langle\sigma \rho, \rho^{2}\right\rangle}=L^{\langle\sigma \rho\rangle} \cap L^{\left\langle\rho^{2}\right\rangle}=\mathbb{Q}\left(a^{3}, \zeta\right) \cap \mathbb{Q}\left(a\left(1-\zeta^{2}\right)\right) \ni\left(a\left(1-\zeta^{2}\right)\right)^{3}=3 a^{3}\left(\zeta-\zeta^{2}\right)$. Because $\left[L^{\left\langle\sigma \rho, \rho^{2}\right\rangle}: \mathbb{Q}\right]=\frac{12}{\left\langle\left\langle\sigma \rho \rho^{2}\right\rangle\right.}=2$ and $a^{3}\left(\zeta-\zeta^{2}\right) \notin \mathbb{Q} \subset \mathbb{R}$ therefore $L^{\left\langle\sigma \rho, \rho^{2}\right\rangle}=$ $\mathrm{Q}\left(a^{3}\left(\zeta-\zeta^{2}\right)\right)$.

In total, we obtain the following towers of fields:

Remark. An intermediate field above is underlined if the corresponding subgroup of $\operatorname{Gal}(L$: Q) is normal.

