1. The Sylvester matrix of two polynomials $f(X) := \sum_{i=0}^{m} a_i X^i$ and $g(X) := \sum_{j=0}^{n} a_j X^j$ over a ring R is given by the $(m+n) \times (m+n)$ matrix

$$Sylv_{f,g} := \begin{pmatrix} a_m & \dots & \dots & a_1 & a_0 & 0 & \dots & 0 \\ 0 & a_m & \dots & \dots & a_1 & a_0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & & & \ddots & \ddots & 0 \\ 0 & \dots & 0 & a_m & \dots & \dots & a_1 & a_0 \\ b_n & \dots & \dots & b_1 & b_0 & 0 & \dots & \dots & 0 \\ 0 & b_n & \dots & \dots & b_1 & b_0 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & & & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & \ddots & & & \ddots & \ddots & 0 \\ 0 & \dots & \dots & 0 & b_n & \dots & \dots & b_1 & b_0 \end{pmatrix}$$

The determinant of the Sylvester matrix is called the *resultant of* f and g and is denoted by $\operatorname{Res}_{f,g} \in R.$

- (a) Compute the resultant of the polynomials $X^3 X + 1$ and $X^2 + X + 3$.
- (b) For two arbitrary polynomials f, g over a ring R prove that

$$\operatorname{Res}_{g,f} = (-1)^{mn} \operatorname{Res}_{f,g}$$

(c) For K a field, let $f, g \in K[X]$ be two polynomials. Prove: the resultant of f and g is equal to zero if and only if the two polynomials have a common root.

(d) For polynomials
$$f(X) = a_m \prod_{i=1}^m (X - \alpha_i)$$
 and $g(X) = b_n \prod_{j=1}^n (X - \beta_j)$ prove:

$$\operatorname{Res}_{f,g} = a_m^n \cdot b_n^m \cdot \prod_{i=1}^m \prod_{j=1}^n (\alpha_i - \beta_j).$$

(e) Let $f(X) = a_0 + a_1 X + \dots + a_{m-1} X^{m-1} + X^m$ be a polynomial over a ring R. Let $\Delta(f)$ denote its discriminant (see exercise sheet 10). Show that

$$\Delta(f) = (-1)^{\frac{m(m-1)}{2}} \operatorname{Res}_{f,f'},$$

where f' denotes the derivative of f.

(f) Determine a general formula for the discriminant of an arbitrary polynomial of degree 2, 3 and 4.

Solution:

(a) By definition of the resultant, we get

$$\operatorname{Res}_{X^{3}-X+1,X^{2}+X+3} = \det \begin{pmatrix} 1 & 0 & -1 & 1 & 0 \\ 0 & 1 & 0 & -1 & 1 \\ 1 & 1 & 3 & 0 & 0 \\ 0 & 1 & 1 & 3 & 0 \\ 0 & 0 & 1 & 1 & 3 \end{pmatrix} = 55.$$

(b) Let f, g be arbitrary polynomials over a ring R. Then we obtain $Sylv_{g,f}$ from $Sylv_{f,g}$ by swapping two rows $m \cdot n$ times. Every time we swap two rows, the determinant of $Sylv_{f,g}$ changes sign, so we obtain

$$\det(\operatorname{Sylv}_{g,f}) = (-1)^{mn} \det(\operatorname{Sylv}_{f,g}).$$

(c) Write $f(X) = \sum^{m} a_i X^i$, $g = \sum^{n} b_j X^j$ and denote by $\operatorname{Sylv}_{f,g}$ the Sylvester matrix. For i > m and i < 0 set $a_i := 0$ and for j > n and j < 0 set $b_j := 0$.

Then $\operatorname{Res}_{f,g} = 0$ if and only if the rows of $\operatorname{Sylv}_{g,f}$ are linearly dependent. This is equivalent to the following: there exist an element $(c_1, \ldots, c_n, d_1, \ldots, d_m) \in K^{m+n} \setminus \{\underline{0}\}$ such that for every $1 \leq j \leq m+n$ we have

$$\sum_{i=1}^{n} c_i a_{m+j-i} = \sum_{i=1}^{m} d_i b_{n+i-j}.$$

This is equivalent to

$$\sum_{j=1}^{m+n} \left(\sum_{i=1}^{n} c_i a_{m+j-i} \right) X^{m+n-j} = \sum_{j=1}^{m+n} \left(\sum_{i=1}^{m} d_i b_{n+i-j} \right) X^{m+n-j}.$$
 (1)

Writing m - j + i = k, we can rewrite the left hand side of (1) as

$$\sum_{i,k} c_i a_k X^{k+n-i} = \left(\sum_{i=1}^n c_i X^{n-i}\right) \cdot \left(\sum_k a_k X^k\right) =: u \cdot f$$

Similarly, writing n + i - j = k, the right hand side of (1) is equal to

$$\sum_{i,k} d_i b_k X^{k+m-i} = \left(\sum_{i=1}^m d_i X^{m-i}\right) \cdot \left(\sum_k b_k X^k\right) =: v \cdot g.$$

Hence (1) holds if and only if there exist $u, v \in K[X]$ not both zero, with $\deg(u) < n, \deg(v) < m$ and

$$u \cdot f = v \cdot g. \tag{2}$$

Then $\deg(u) = \deg(v) + \deg(g) - \deg(f) < m + n - n = m$, and similarly $\deg(v) < n$. Thus, comparing the degrees of the polynomials in equation (2) we obtain that this is equivalent to f and g having a common root.

(d) Write $f(X) = \sum^{m} a_i X^i$, $g = \sum^{n} b_j X^j$. Then we can express $det(Sylv_{f,g})$ in terms of $a_m, b_n, \{\alpha_i\}_i, \{\beta_j\}_j$. The polynomials f and g have a common zero if and only if there

exist i, j with $\alpha_i = \beta_j$, i.e. $\alpha_i - \beta_j = 0$. Since $\operatorname{Res}_{f,g} = 0$ if and only if $\alpha_i - \beta_j = 0$ by part (c), we have that $\alpha_i - \beta_j$ divides $\operatorname{Res}_{f,g}$ for all $1 \le i \le m, 1 \le j \le n$.

By looking at the definition of the Sylvester matrix for f and g, we see that a_m divides the first n rows, and b_n divides the rows n+1 to n+m. Thus $a_m^n \cdot b_n^m \cdot \prod_{i=1}^m \prod_{j=1}^n (\alpha_i - \beta_j)$ divides $\operatorname{Res}_{f,g}$.

Now, note that

$$\det(\operatorname{Sylv}_{f,g}) = a_m^n \cdot b_n^m \begin{pmatrix} 1 & \dots & \dots & \dots & \prod_{i=1}^m \alpha_i & 0 & \dots & 0 \\ 0 & 1 & \dots & \dots & \dots & \prod_{i=1}^m \alpha_i & \ddots & \vdots \\ \vdots & \ddots & \ddots & & & \ddots & 0 \\ 0 & \dots & 0 & 1 & \dots & \dots & \prod_{i=1}^m \alpha_i & \\ 1 & \dots & \dots & \prod_{j=1}^n \beta_j & 0 & \dots & \dots & 0 \\ 0 & 1 & \dots & \dots & \prod_{j=1}^n \beta_j & \ddots & & \vdots \\ \vdots & \ddots & \ddots & & & \ddots & 0 \\ \vdots & \ddots & \ddots & & & \ddots & 0 \\ 0 & \dots & \dots & 0 & 1 & \dots & \dots & \prod_{j=1}^n \beta_j \end{pmatrix}$$

so by looking at the upper- and lower-triangular submatrices of $Sylv_{f,g}$ which have ones on the diagonal, we obtain that

$$\operatorname{Res}_{f,g} = a_m^n \cdot b_n^m \prod_{i=1}^m \alpha_i^n + \dots + a_m^n \cdot b_n^m \prod_{j=1}^n \beta_j^m.$$

Hence we obtain part (d).

(e) Write $f(X) = \prod_{i=1}^{m} (X - \alpha_i)$. From Exercise sheet 10, question 5 recall the definition of the discriminant of f:

$$\Delta(f) = \prod_{1 \le i < j \le n} (\alpha_i - \alpha_j)^2.$$

Taking the derivative of f, we get

$$f'(X) = \sum_{k=1}^{m} \prod_{i \neq k} (X - \alpha_i),$$

which implies

$$f'(\alpha_j) = \sum_{k=1}^m \prod_{i \neq k} (\alpha_j - \alpha_i) = \prod_{i \neq j} (\alpha_j - \alpha_i).$$

If we write $f'(X) = b \cdot \prod_{j=1}^{m-1} (X - \beta_j)$ then by part (d),

$$\operatorname{Res}_{f,f'} = \prod_{i=1}^{m} b \cdot \prod_{j=1}^{m-1} (\alpha_i - \beta_j) = \prod_{i=1}^{m} f'(\alpha_i),$$

and hence

$$(-1)^{\frac{m(m-1)}{2}} \cdot \operatorname{Res}_{f,f'} = (-1)^{\frac{m(m-1)}{2}} \cdot \prod_{i=1}^{m} f'(\alpha_i)$$
$$= (-1)^{\frac{m(m-1)}{2}} \cdot \prod_{i=1}^{m} \prod_{i \neq j} (\alpha_j - \alpha_i)$$
$$= \prod_{i < j} (\alpha_i - \alpha_j)^2.$$

(f) Consider $f(X) := X^2 + bX + c$. Then

$$\operatorname{Sylv}_{f,f'} = \begin{pmatrix} 1 & b & c \\ 2 & b & 0 \\ 0 & 2 & b \end{pmatrix},$$

so that $\det(\operatorname{Sylv}_{f,f'}) = b^2 + 4c - 2b^2 = 4c - b^2$, and thus $\Delta(f) = b^2 - 4c$. Similarly for a polynomial of degree 3 and 4, say $f(X) := X^3 + bX^2 + cX + d$ and $g(X) := X^4 + bX^3 + cX^2 + dX + e$, one can compute the determinant of the Sylvester matrix to get

$$\Delta(f) = b^2 c^2 - 4c^3 - 4b^3 d - 27d^2 + 18bcd,$$

and

$$\begin{split} \Delta(g) = & 256e^3 - 192bde^2 - 128c^2e^2 + 144cd^2e - 27d^4 + 144b^2ce^2 - 6b^2d^2e - 80bc^2de \\ &+ 18bcd^3 + 16c^4e - 4c^3d^2 - 27b^4e^2 + 18b^3cde - 4b^3d^3 - 4b^2c^3e + b^2c^2d^2 \,. \end{split}$$

- 2. Let n be a positive integer, and $P \in \mathbb{Z}[X]$ a monic irreducible factor of $X^n 1 \in \mathbb{Q}[X]$. Suppose that ζ is a root of P.
 - (a) Show that for each $k \in \mathbb{Z}_{\geq 0}$ there exists a unique polynomial $R_k \in \mathbb{Z}[X]$ such that $\deg(R_k) < \deg(P)$ and $P(\zeta^k) = R_k(\zeta)$. Prove that $\{R_k | k \in \mathbb{Z}_{\geq 0}\}$ is a finite set. We define

 $a := \sup\{|u| : u \text{ is a coefficient of some } R_k\}$

- (b) Show that for k = p a prime, p divides all coefficients of R_p, and that when p > a one has R_p = 0 (*Hint*: P(ζ^p) = P(ζ^p) P(ζ)^p).
- (c) Deduce that if all primes dividing some positive integer m are strictly greater then a, then $P(\zeta^m) = 0$.
- (d) Prove that if r and n are coprime, then $P(\zeta^r) = 0$ (*Hint:* Consider the quantity $m = r + n \prod_{p \le a, p \nmid r} p$).
- (e) Recall the definition of *n*-th cyclotomic polynomial Φ_n for $n \in \mathbb{Z}_{>0}$: we take $W_n \subseteq \mathbb{C}$ to be the set of primitive *n*-th roots of unity, and define

$$\Phi_n(X) := \prod_{x \in W_n} (X - x).$$

Prove the following equality for $n \in \mathbb{Z}_{>0}$:

$$\prod_{0 < d \mid n} \Phi_d(X) = X^n - 1,$$

and deduce that $\Phi_n \in \mathbb{Z}[X]$ for every n.

(f) Prove that the *n*-th cyclotomic polynomial is irreducible. (*Hint:* Take ζ := exp(2πi/n) and P its minimal polynomial over Q. Check that P satisfies the required hypothesis to deduce that Φ_n(X)|P (using parts (a)-(d)). Then irreducibility of P together with part (e) allow you to conclude.)

Solution: Recall that for a monic polynomial $f \in \mathbb{Z}[X]$ we know that f is irreducible in $\mathbb{Z}[X]$ if and only if it is irreducible in $\mathbb{Q}[X]$.

(a) Since P is monic and irreducible in Z[X], it is also irreducible in Q[X], so that Q(ζ) ≃ Q[X]/(P(X)) is an algebraic extension of Q of degree deg(P), and the elements 1, ζ, ..., ζ^{deg(P)} are linearly independent. Then P(ζ^k) ∈ Q(ζ) cannot be expressed in more then one way as P(ζ^k) = R_k(ζ) with R_k ∈ Z[X] of degree < deg(P), and we only have to check existence. This is a special case of proving that for each f ∈ Z[X] we have f(ζ) = b₀ + b₁ζ + ··· + b_{deg(P)-1}ζ^{deg(P)-1} for some b_i ∈ Z, which is easily proven by induction on deg(f): the statement is trivial for all deg(f) < deg(P); for bigger degree, we see that the degree of f can be lowered (up to equivalence modulo P) by substituting the maximal power X^{deg(P)+a} of X in f with X^a(X^{deg(P)} - P(X)), which has degree strictly smaller then deg(P) + a as P is monic, so that the inductive hypothesis can be applied.

(More simply, one can notice that $\mathbb{Z}[X]$ is a unique factorization domain, and that Euclidean division of f by P can be performed (as in $\mathbb{Q}[X]$), so that $R_k(X)$ is nothing but the residue of the division of $R(X^k)$ by P(X).)

Since ζ^k = ζ^h for n|k − h, the set {ζ^k : k ∈ Z_{≥0}} is finite, and so is the set of the R_k's.
(b) Notice that for f ∈ Z[X] one has that f(X^p)−f(X)^p is divisible by p. Indeed, we write f = ∑^s_{j=0} λ_jX^j and consider the multinomial coefficient for a partition into positive integers t = ∑_i t_i:

$$(*) \begin{pmatrix} t \\ t_1, \dots, t_s \end{pmatrix} = \frac{t!}{t_1! \cdots t_s!} = \begin{pmatrix} t \\ t_1 \end{pmatrix} \begin{pmatrix} t - t_1 \\ t_2 \end{pmatrix} \begin{pmatrix} t - t_1 - t_2 \\ t_3 \end{pmatrix} \cdots \begin{pmatrix} t_{s-1} + t_s \\ t_{s-1} \end{pmatrix} \in \mathbb{Z},$$

which counts the number of partitions of a set of t elements into subsets of t_1, t_2, \ldots, t_s elements, and we have

$$f(X^{p}) - f(X)^{p} = \sum_{j=0}^{s} \lambda_{j} X^{jp} - \sum_{\substack{e_{0} + \dots + e_{j} = p \\ 0 \leqslant e_{j} \leqslant p}} \binom{p}{e_{0}, \dots, e_{s}} \prod_{j=0}^{s} (\lambda_{j})^{e_{j}} X^{je_{j}}$$
$$= \sum_{j=0}^{s} (\lambda_{j} - \lambda_{j}^{p}) X^{jp} - \sum_{\substack{e_{0} + \dots + e_{j} = p \\ 0 \leqslant e_{j} < p}} \binom{p}{e_{0}, \dots, e_{s}} \prod_{j=0}^{s} (\lambda_{j})^{e_{j}} X^{je_{j}}.$$

By Fermat's little theorem we have $p|\lambda_j - \lambda_j^p$ for each *j*. Moreover, each multinomial coefficient appearing in the second sum is divisible by *p*, because the definition in terms

of factorials in (*) makes it clear that none of the e_j has p as a factor, so that p does not cancel out while simplifying the fraction, which belongs to \mathbb{Z} . Hence $p|f(X^p) - f(X)^p$. We can then write $P(\zeta^p) = P(\zeta^p) - P(\zeta)^p = pQ(\zeta)$ for some $Q(X) \in \mathbb{Z}[X]$, and by what we proved in the previous point we can write $Q(\zeta) = R_Q(\zeta)$ for some polynomial $R_Q \in \mathbb{Z}[X]$ of degree strictly smaller than deg(P). This gives $R_p(\zeta) = P(\zeta^p) =$ $pR_Q(\zeta)$, and by uniqueness of R_p we can conclude that $R_p = pR_Q \in p\mathbb{Z}[X]$.

If p > a, then the absolute values of the coefficients of R_p are non-negative multiples of p, and by definition of a they need to be zero, so that $R_p = 0$ in this case.

- (c) This is an easy induction on the number s of primes (counted with multiplicity) dividing m. One can indeed write $m = \prod_{i=1}^{s} p_i$ for some primes $p_i > a$. For s = 1 this is just the previous point, because $R_{p_1} = 0$ means $P(\zeta^{p_1}) = 0$. More in general, by inductive hypothesis we can assume that $P(\zeta^{p_1 \cdots p_{s-1}}) = 0$, and apply the previous point with $\zeta^{p_1 \cdots p_{s-1}}$ (which is a root of P) instead of ζ to get $P((\zeta^{p_1 \cdots p_{s-1}})^{p_s}) = 0$.
- (d) Let $m = r + n \prod_{p \le a, p \nmid r} p$. For $q \le a$ a prime, we see that q either divides r or $n \prod_{p \le a, p \nmid r} p$, so that q does not divide m and by previous point we get $P(\zeta^m) = 0$. But $\zeta^n = 1$ by hypothesis (because $P|X^n - 1$), so that $\zeta^m = \zeta^r$ and we get $P(\zeta^r) = 0$.
- (e) Let $\gamma_n = \prod_{0 < d \mid n} \Phi_d$. Since a complex number belongs to W_k if and only if it has multiplicative order k, all the W_k 's are disjoint. Then γ_n has distinct roots, and its set of roots is $\bigcup_{0 < d \mid n} W_d$. On the other hand, the roots of $X^n 1$ are also all distinct: they are indeed the n distinct complex numbers $\exp(2\pi i k/n)$ for $a = 0, \ldots, n-1$. It is then easy to see that the two polynomials have indeed the same roots, since a n-th root of unity has order d dividing n, and primitive d-th roots of unity are n-th roots of unity for $d \mid n$. As both γ_n and Φ_n are monic, unique factorization in $\mathbb{Q}[X]$ gives $\gamma_n = \Phi_n$ as desired.

We then prove that the coefficients of the Φ_n are integer by induction on n. For n = 1 we have $\Phi_n = X - 1 \in \mathbb{Z}[X]$. For n > 1, suppose that $\Phi_k \in \mathbb{Z}[X]$ for all k < n. Then

$$\Phi_n = \frac{X^n - 1}{\prod_{\substack{0 < d \mid n \\ d \neq n}} \Phi_d(X)},$$

and since the denominator lies in $\mathbb{Z}[X]$ by inductive hypothesis, we can conclude that $\Phi_n \in \mathbb{Z}[X]$. Indeed, Φ_n needs necessarily to lie in $\mathbb{Q}[X]$ (else, for l the minimal degree of a coefficient of Φ_n not lying in \mathbb{Q} and m the minimal degree of a non-zero coefficients of the denominator, one would get that the coefficient of degree l + m in $X^n - 1$ would not lie in \mathbb{Q} , contradiction). We can then write the monic polynomial Φ_n as $\frac{1}{\mu}\Theta_n$ for some primitive polynomial $\Theta_n \in \mathbb{Z}[X]$, but then Gauss's lemma tells us that $X^n - 1$ equals $\frac{1}{d}$ times a primitive polynomial, and the only possibility is $d = \pm 1$, which implies that $\Phi_n \in \mathbb{Z}[X]$.

(f) $\zeta = \exp(2\pi i/n)$ satisfies both its minimal polynomial P and $X^n - 1$, so that $P|X^n - 1$. Being $X^n - 1$ and P monic we necessarily have $P \in \mathbb{Z}[X]$ by Gauss's lemma. Then $W_n = \{\zeta^r : 0 < r < n, (r, n) = 1\}$, so that by part (d) we get P(x) = 0 for each $x \in W_n$ and by definition of Φ_n we obtain $\Phi_n|P$. This is a divisibility relation between two polynomials in $\mathbb{Q}[X]$, hence an equality as P is irreducible in $\mathbb{Q}[X]$. In particular, the cyclotomic polynomial Φ_n is itself irreducible. 3. Let L be a splitting field of the polynomial $X^6 - 5$ over Q. Determine all intermediate fields of $L : \mathbb{Q}$ together with their inclusions.

Solution: Since \mathbb{C} is algebraically closed, we can assume L to be embedded in \mathbb{C} . Let a be the positive real sixth root of 5. Let ζ be a primitive third root of unity in \mathbb{C} . For $1 \le i \le 6$ let $a_i := a \cdot (-\zeta)^{i-1}$. Then $a_i^6 - 5 = a^6 \cdot (-\zeta)^{6i-6} - 5 = 0$, so a_1, \ldots, a_6 are the six different zeros of $X^6 - 5$. Thus $L = \mathbb{Q}(a_1, \ldots, a_6) \subset \mathbb{Q}(a, \zeta)$, and because $a_1 = a$ and $-\frac{a_2}{a_1} = -\frac{a \cdot (-\zeta)}{a} = \zeta$, even $L = \mathbb{Q}(a, \zeta)$.

For $1 \leq i \leq 6$ we have $[\mathbb{Q}(a_i) : \mathbb{Q}] = 6$, since $X^6 - 5$ is irreducible according to the Eisenstein criterion. Because $\zeta \notin \mathbb{Q}(a) \subset \mathbb{R}$ is also $[L : \mathbb{Q}(a)] = 2$, and thus $[L : \mathbb{Q}] = [L : \mathbb{Q}(a)] \cdot [\mathbb{Q}(a) : \mathbb{Q}] = 12$. In particular, $\operatorname{Gal}(L : \mathbb{Q})$ also has order 12.

In the following, we consider $Gal(L : \mathbb{Q})$ as a subgroup of S_6 given by the embedding induced by $a_i \mapsto i$.

Since $L : \mathbb{Q}$ is normal, the restriction σ of the complex conjugation to L is an element of $Gal(L : \mathbb{Q})$. Specifically, σ corresponds to the permutation (26)(35).

Since $X^6 - 5$ is irreducible, $\operatorname{Gal}(L : \mathbb{Q})$ operates transitively on its zeros; hence there exists $\rho \in \operatorname{Gal}(L : \mathbb{Q})$ with $\rho(a_1) = a_2$. Because $\sigma(a_1) = a_1$, we have $(\rho\sigma)(a_1) = a_2$. Since σ swaps the two zeros ζ and ζ^2 of the irreducible polynomial $X^2 + X + 1$ and ρ swaps or fixes them as \mathbb{Q} -homomorphisms, we can therefore assume (by replacing ρ by $\rho\sigma$ if necessary) without loss of generality, that $\rho(\zeta) = \zeta$. Then $\rho(a_i) = \rho(a \cdot (-\zeta)^{i-1}) = a \cdot (-\zeta)^i$, so ρ has the representation $(1\,2\,3\,4\,5\,6)$.

The calculation $\sigma \rho \sigma^{-1} = (26)(35)(123456)(26)(35) = (654321) = \rho^{-1}$ now shows that

$$\langle \rho, \sigma \rangle = \langle \rho, \sigma \mid \sigma^2 = \rho^6 = 1, \sigma \rho \sigma^{-1} = \rho^{-1} \rangle \cong D_6,$$

so the subgroup generated by ρ and σ has at least order 12, and since $|\operatorname{Gal}(L:\mathbb{Q})| = 12$, we obtain $\operatorname{Gal}(L:\mathbb{Q}) = \langle \rho, \sigma \rangle \cong D_6$.

We now make a list of all subgroups of $Gal(L : \mathbb{Q}) \cong D_6$ (we leave the detailed verification to the reader); normal subgroups are underlined:

From this we now deduce the set-up of the intermediate fields; the Galois correspondence assigns to a subgroup $H < \text{Gal}(L : \mathbb{Q})$ the fixed field L^H with the extension degree $[L^H : \mathbb{Q}] = \frac{|\text{Gal}(L:\mathbb{Q})|}{|H|} = \frac{12}{|H|}$:

- $L^{\{1\}} = L.$
- $L^{\operatorname{Gal}(L:\mathbb{Q})} = \mathbb{Q}.$
- It is $\sigma(a) = a$, thus $\mathbb{Q}(a) \subset L^{\langle \sigma \rangle}$. In addition, $[\mathbb{Q}(a) : \mathbb{Q}] = 6 = \frac{12}{|\langle \sigma \rangle|}$, i.e. $L^{\langle \sigma \rangle} = \mathbb{Q}(a)$.
- Analogously, $(\sigma \rho^2)(a\zeta^2) = a\zeta^2$, i.e. $\mathbb{Q}(a\zeta^2) \subset L^{\langle \sigma \rho^2 \rangle}$. In addition, $[\mathbb{Q}(a\zeta^2) : \mathbb{Q}] = 6 = \frac{12}{|\langle \sigma \rho^2 \rangle|}$, i.e. $L^{\langle \sigma \rho^2 \rangle} = \mathbb{Q}(a\zeta^2)$.
- Analogously, $(\sigma \rho^4)(a\zeta) = a\zeta$, i.e. $\mathbb{Q}(a\zeta) \subset L^{\langle \sigma \rho^4 \rangle}$. Furthermore, $[\mathbb{Q}(a\zeta) : \mathbb{Q}] = 6 = \frac{12}{|\langle \sigma \rho^4 \rangle|}$, i.e. $L^{\langle \sigma \rho^4 \rangle} = \mathbb{Q}(a\zeta)$.
- It is $\sigma(a^2) = \rho^3(a^2) = a^2$, so $\mathbb{Q}(a^2) \subset L^{\langle \sigma, \rho^3 \rangle}$. In addition, a^2 is a zero of the polynomial $X^3 5$ which is irreducible over \mathbb{Q} , so $[\mathbb{Q}(a^2) : \mathbb{Q}] = 3 = \frac{12}{|\langle \sigma, \rho^3 \rangle|}$ and thus $L^{\langle \sigma, \rho^3 \rangle} = \mathbb{Q}(a^2)$.
- Analogously, $(\sigma \rho^2)(a^2 \zeta) = \rho^3(a^2 \zeta) = a^2 \zeta$, thus $\mathbb{Q}(a^2 \zeta) \subset L^{\langle \sigma \rho^2, \rho^3 \rangle}$. Moreover, $a^2 \zeta$ is a zero of the polynomial $X^3 5$ irreducible over \mathbb{Q} , so $[\mathbb{Q}(a^2 \zeta) : \mathbb{Q}] = 3 = \frac{12}{|\langle \sigma \rho^2, \rho^3 \rangle|}$ and thus $L^{\langle \sigma \rho^2, \rho^3 \rangle} = \mathbb{Q}(a^2 \zeta)$.
- Analogously, $(\sigma\rho^4)(a^2\zeta^2) = \rho^3(a^2\zeta^2) = a^2\zeta^2$, i.e. $\mathbb{Q}(a^2\zeta^2) \subset L^{\langle\sigma\rho^4,\rho^3\rangle}$. Furthermore, $a^2\zeta^2$ is a zero of the polynomial $X^3 5$ irreducible over \mathbb{Q} , thus $[\mathbb{Q}(a^2\zeta^2) : \mathbb{Q}] = 3 = \frac{12}{|\langle\sigma\rho^4,\rho^3\rangle|}$ and thus $L^{\langle\sigma\rho^4,\rho^3\rangle} = \mathbb{Q}(a^2\zeta^2)$.
- It is $\rho(\zeta) = \zeta$, thus $\mathbb{Q}(\zeta) \subset L^{\langle \rho \rangle}$. Furthermore, $[\mathbb{Q}(\zeta) : \mathbb{Q}] = 2 = \frac{12}{|\langle \rho \rangle|}$, thus $\mathbb{Q}(\zeta) = L^{\langle \rho \rangle}$.
- It is $\sigma(a^3) = \rho^2(a^3) = a^3$, so $\mathbb{Q}(a^3) \subset L^{\langle \sigma, \rho^2 \rangle}$. Moreover, a^3 is a zero of the irreducible polynomial $X^2 5$ over \mathbb{Q} , so $[\mathbb{Q}(a^3) : \mathbb{Q}] = 2 = \frac{12}{|\langle \sigma, \rho^2 \rangle|}$ and thus $\mathbb{Q}(a^3) = L^{\langle \sigma, \rho^2 \rangle}$.

- It is $\rho^2(a^3) = a^3$ and $\rho^2(\zeta) = \zeta$, thus $\mathbb{Q}(a^3, \zeta) \subset L^{\langle \rho^2 \rangle}$. Because $\zeta \notin \mathbb{Q}(a^3) \subset \mathbb{R}$ is $[\mathbb{Q}(a^3, \zeta) : \mathbb{Q}] = [\mathbb{Q}(a^3, \zeta) : \mathbb{Q}(a^3)][\mathbb{Q}(a^3) : \mathbb{Q}] = 4$, thus $[\mathbb{Q}(a^3, \zeta) : \mathbb{Q}] = \frac{12}{|\langle \rho^2 \rangle|}$ and therefore $L^{\langle \rho^2 \rangle} = \mathbb{Q}(a^3, \zeta)$.
- Analogously, $\rho^3(a^2) = a^2$ and $\rho^3(\zeta) = \zeta$, thus $\mathbb{Q}(a^2, \zeta) \subset L^{\langle \rho^3 \rangle}$. Because $\zeta \notin \mathbb{Q}(a^2) \subset \mathbb{R}$ is $[\mathbb{Q}(a^2, \zeta) : \mathbb{Q}] = [\mathbb{Q}(a^2, \zeta) : \mathbb{Q}(a^2)][\mathbb{Q}(a^2) : \mathbb{Q}] = 6$, thus $[\mathbb{Q}(a^2, \zeta) : \mathbb{Q}] = \frac{12}{|\langle \rho^3 \rangle|}$ and therefore $L^{\langle \rho^3 \rangle} = \mathbb{Q}(a^2, \zeta)$.
- $(\sigma\rho^3)(a\zeta) = -a\zeta^2$ and therefore $(\sigma\rho^3)(a(\zeta-\zeta^2)) = a(\zeta-\zeta^2)$ because $(\sigma\rho^3)^2 = 1_L$; so $\mathbb{Q}(a(\zeta-\zeta^2))is \subset L^{\langle\sigma\rho^3\rangle}$. In addition, $a(\zeta-\zeta^2)$ is a zero of the polynomial X^6+135 , and this is irreducible over \mathbb{Q} according to the Eisenstein criterion with respect to the prime number 5. Therefore, $[\mathbb{Q}(a(\zeta-\zeta^2)):\mathbb{Q}] = 6 = \frac{12}{|\langle\sigma\rho^3\rangle|}$ and thus $L^{\langle\sigma\rho^3\rangle} = \mathbb{Q}(a(\zeta-\zeta^2))$.
- Analogously, $(\sigma\rho^5)(a) = -a\zeta$ and thus $(\sigma\rho^5)(a(1-\zeta)) = a(1-\zeta)$ because $(\sigma\rho^5)^2 = 1_L$; therefore $\mathbb{Q}(a(1-\zeta)) \subset L^{\langle \sigma\rho^5 \rangle}$. In addition, $a(1-\zeta)$ is a zero of the polynomial $X^6 + 135$. Therefore, $[\mathbb{Q}(a(1-\zeta)):\mathbb{Q}] = 6 = \frac{12}{|\langle \sigma\rho^5 \rangle|}$ and thus $L^{\langle \sigma\rho^5 \rangle} = \mathbb{Q}(a(1-\zeta))$.
- Analogously, $(\sigma\rho)(a) = -a\zeta^2$ and therefore $(\sigma\rho)(a(1-\zeta^2)) = a(1-\zeta^2)$ because $(\sigma\rho)^2 = 1_L$; thus $\mathbb{Q}(a(1-\zeta^2))is \subset L^{\langle\sigma\rho\rangle}$. In addition, $a(1-\zeta^2)$ is a zero of the polynomial $X^6 + 135$. Therefore, $[\mathbb{Q}(a(1-\zeta^2)):\mathbb{Q}] = 6 = \frac{12}{|\langle\sigma\rho\rangle|}$ and thus $L^{\langle\sigma\rho\rangle} = \mathbb{Q}(a(1-\zeta^2))$.
- It is $L^{\langle \sigma \rho, \rho^2 \rangle} = L^{\langle \sigma \rho \rangle} \cap L^{\langle \rho^2 \rangle} = \mathbb{Q}(a^3, \zeta) \cap \mathbb{Q}(a(1-\zeta^2)) \ni (a(1-\zeta^2))^3 = 3a^3(\zeta-\zeta^2).$ Because $[L^{\langle \sigma \rho, \rho^2 \rangle} : \mathbb{Q}] = \frac{12}{|\langle \sigma \rho, \rho^2 \rangle|} = 2$ and $a^3(\zeta-\zeta^2) \notin \mathbb{Q} \subset \mathbb{R}$ therefore $L^{\langle \sigma \rho, \rho^2 \rangle} = \mathbb{Q}(a^3(\zeta-\zeta^2)).$

In total, we obtain the following towers of fields:

Remark. An intermediate field above is underlined if the corresponding subgroup of $Gal(L : \mathbb{Q})$ is normal.