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Solutions Exercise sheet 12

1. Let V be vector space of dimension n over the field F, let A, B € Mat,,,,(F') be matrices
corresponding to two linear transformations on V. Let V4 and Vp be the vector space V'
viewed as an F'[ X | module using A and B respectively. i.e. the action of x € F[X]onv e V
is defined as X - v := Av (or X - v = Bv).

Show that V4 is isomoprhic to Vz as F[X] modules if and only if B = UAU ! for some
matrix U € GL(n, F).

Solution:

Let ¢ : V4 — Vg be an F[ X ]|-module isomorphism. This means ¢ is a bijection and for all
v,v' € Vand f(X) € F[X] we have

p(v+V)=pv)+o(V), o(f(X)v)=f(X)p(v).

Polynomials are sums of monomials and knowing multiplication by X determines multipli-
cation by X" for all 7 > 1, the above conditions on ¢ are equivalent to

p(v+V)=p(v)+o(V), @lev) =cp(v), @(Xv)=Xp(v)

for all v and v’ in V and c in F'. The first two equations say ¢ is F-linear and the last
equation says p(Av) = Bp(v) forallve V.So ¢ : V — V is an F-linear bijection and
©(Av) = By(v) forall v e V. Since V = F", every F-linear map ¢ : V — V is a matrix
transformation: for some U € Mat,, (F),

o(v) =Uv.

Indeed, if there were such a matrix U then letting v run over the standard basis ey, ..., e,
tells us the i-th column of U is ¢ (e;), and the other way around define U to be the matrix

[90 (el) "2 (en)] € Matnxn(F)

having i-th column ¢ (e;). Then ¢ and U have the same values on the e;’s and both are
linear on F™, so they have the same value at every vector in /™. Since ¢ is a bijection, U is
invertible, i.e., U € GL, (F'). Now the condition ¢(Av) = By(v) for all v e VV means

U(Av) = B(Uv) < Av = U 'BUv
forallv e V = F". Letting v = ey, ..., e, tells us that A and U ! BU have the same i-th

column for all 4, so they are the same matrix: A = U~'BU,so B = UAU L.

Conversely, suppose there is an invertible matrix U € GL, (F) with B = UAU!. Define
¢ : V4 — Vg by p(v) = Uv. The matrix U is invertible, so this is a bijection. It is also
F-linear. To show



forall ve Vand f(X) e F[X], it suffices by F-linearity to check
p (X'v) = X'o(v)

for all v € V and for ¢ > 0. For this to hold, it suffices to check p(Xv) = Xp(v) for all
v € V. This last condition says that p(Av) = By(v) forall v e V. Since B = UAU "}, i.e.
UA = BU, so

o(Av) =U(Av) = (UA)v = (BU)v = B(Uv) = By(v)

forallveV.

Let R be a non-zero commutative ring with 0 # 1. Show that if R" ~ R™ as R-modules
then m = n.

Solution:

Let M := R™, N := R™ and let I be a maximal ideal of R. Let V = M /IM. Here we
denote by

k
IM = {Zaixiaiel,xieM,kE]N}
=1

i.e all finite /-linear combinations of elements of M. It is easy to verify that V' is a vector
space over the field X' = R/I where the scalar multiplication is defined via (r + I)(x +
IM) =rx+IMforr+ 1€ K andz + IM € M/IM. This is well defined since if r € T
orx € IM then rz € IM, and hence (r + I)(x + IM) = I M.

Now one can also see that if {z;} is a basis of M over R, then &; = x; + I M is a basis
of V.= M/IM. Hence V is a vector space of dimension m over K. Similarly we get that
N/IN is a vector space of dimension n.

The isomorphism of R = M ~ N = R" restricts to an isomorphism of /M ~ IN and
we get an induced isomorphism M /IM ~ N/IN. Since M /IM and I/IN are isomorphic
finite dimensional vector spaces, they have the same dimension and we get that m = n.

Let R be aring, let M be an R-module and let NV be a submodule of M. Prove:

(a) If M is finitely generated, then M /N is finitely generated.
(b) If N and M/N are finitely generated, then M is finitely generated.
(¢) If Nand M/N are free R-modules, then M is a free R-module.

Solution: Let p : M — M /N, m — m + N denote the quotient map.

We will prove the following more general statements:

(a’) If M has a generating subset of cardinality r, then so does M/N.

(b>) If N and M/N have generating subsets of cardinalities respectively r and s, then M has
a generating subset of cardinality r + s.

(c’) If N and M/N have bases of cardinalities respectively r and s, then M has a basis of
cardinality r + s.



Proof. (a’) The images in M /N of a generating subset of M generate M /N, since the cano-
nical morphism from M to M /N is surjective. In particular, M /N is finitely generated if M
is.

(b’) Let (ny,...,n,) be a generating family of N, and let (m4, ..., m) be a family of ele-
ments of M such that (¢ (mq),...,¢ (ms)) generate M/N. Let us show that the family
(mq,...,mg,ny,...,n,) generates M.

Let m € M. By hypothesis, p(m) is a linear combination of ¢ (my), ...,y (ms). There
thus exist elements a;, € R such that ¢(m) = >)°_, ¢ (m;)a;. Consequently, n = m —
>._, m;a; belongs to N and there exist elements b; € R such that n = Z;Zl n;b;. Then
m = Y.;_, ma; + Y;_ n;b; is a linear combination of the m; and of the n;.

(c’) Moreover, let us assume that (nq, ..., n,) be a basis of N and that (¢ (m1),...,p (ms))
be a basis of M/N; let us show that (mq,...,mg,ny,...,n,) is a basis of M. Since we
already proved that this family generates M, it remains to show that it is free. So let 0 =
Dl mia; + Z;zl n;b; be a linear dependence relation between these elements. Applying
¢, we get a linear dependence relation 0 = »°_, ¢ (m;) a; for the family ¢ (m;). Since this
family is free, one has a; = 0 for every <. It follows that 0 = Z;:1 n;b;; since the family
(nq,...,n,) is free, b; = 0 for every j. The considered linear dependence relation is thus
trivial, as was to be shown.

Let R be a PID. Show that every submodule /V of a free R-module M of rank 7 is finitely
generated with at most n generators.

Hint: Apply Exercise 3.
Solution:

It suffices to show that every submodule N of " is free of rank < n; and we will prove this
by induction on n.

If n = 0, then R™ = 0, hence N = 0 so that N is a free R-module of rank 0.

Assume that n = 1. Then N is an ideal of R. If N = 0, then N is free of rank 0. Otherwise,
since R is a PID, there exists a nonzero element » € R such that N = (r). Since R is a
domain, the map a — ra is an isomorphism from R to NV, so that N is free of rank 1.

Let now n be an integer > 2 and let us assume that for any integer r < n, every submodule
of R" is free of rank less or equal than r. Let N be a submodule of R". Let f : R — R be
the linear form given by (aq, ..., a,) — a,; it is surjective and its kernel is the submodule
My = R"™! x {0} of R™. By induction, the ideal f(N) of R is free of rank < 1. The
submodule Ny = N n M, of Mj is isomorphic to a submodule of R"~!, so is free of rank
< n — 1 by our induction hypothesis.

Since the module M, = ker(f) is free of rank < n — 1, and f(IV) is free of rank < 1, we
have that N is free of rank < n by Exercise 3. part (c).

Let R be a commutative ring. An R-module M is called a Noetherian R-module if it satisfies
the ascending chain condition on submodules, i.e., whenever

M1CM2C'-‘

3



is an increasing chain of submodules of M, then there is a positive integer m such that for
all £k > m we have M, = M,,.

Show that the following are equivalent for an R module M:

(a) M is a Noetherian R-module.
(b) Every non empty subset of modules of M contains a maximal element under inclusion.

(c) Every submodule of M is finitely generated.

Solution:

[(5.a) = (5.c)] Let us assume that M is Noetherian, that is, any nonempty family of submo-
dules of M admits a maximal element.

Let N be a submodule of M and consider the family Sy of all finitely generated submodules
of N. This family is nonempty because the null module O belongs to Sy. By hypothesis,
Sy has a maximal element, say, N'. By definition, the R-module N’ is a finitely generated
submodule of N and no submodule P of N such that N’ < P is finitely generated. For every
m € N, the R-module P = N’ + Rm satisfies N < P < N and is finitely generated; by
maximality of N’, one has P = N’, hence m € N’. This proves that N’ = N, hence N is
finitely generated.

[(5.c) = (5.b)] Let us assume that every submodule of M is finitely generated. Let {M,,} _
be an increasing sequence of submodules of M. Let N = ( ] M,, be the union of these modules
M,,.

Since the family is increasing, N is a submodule of M. By hypothesis, N is finitely generated.
Consequently, there exists a finite subset S < N such that N = {(S). For every s € S, there
exists an integer ns € N such that s € M,,_; then s € M,, for any integer n such that n > n,.
Let us set v = sup (ny), so that S = M,. It follows that N = () is contained in M,,. Finally,
for n > v, the inclusions M, < M,, € N < M,, for n > v show that M,, = M,,. Hence we
have shown that the sequence {M,,} is stationary.

[(5.b) = (5.a)] Let us assume that any increasing sequence of submodules of M is stationary
and let {M,},_; be a family of submodules of M indexed by a nonempty set I.

Assuming by contradiction that this family has no maximal element, we are going to con-
struct from the family {M,} a strictly increasing sequence of submodules of M. Fix i; € 1. By
hypothesis, M;, is not a maximal element of the family {M,}, so that there exists iy € I such
that M;, < M,,. Then M,, is not maximal neither, hence the existence of i3 € I such that
M,, < M,, and we can continue on like this. Hence, we obtain a strictly increasing sequence
{M,, },.cn Of submodules of M, hence the desired contradiction.

Show that if R is a PID then every nonempty set of ideals of R has a maximal element and
that R is Noetherian.

Solution: Let I be an ideal of R. Since R is a PID, the ideal [ is principal and hence finitely
generated. Hence by question 5. we obtain that R is Noetherian (by part (a)) and every
nonempty set of ideals of R has a maximal element under inclusion (by part (b)).



