1. Let V be vector space of dimension n over the field F, let $A, B \in Mat_{n \times n}(F)$ be matrices corresponding to two linear transformations on V. Let V_A and V_B be the vector space V viewed as an F[X] module using A and B respectively. i.e. the action of $x \in F[X]$ on $v \in V$ is defined as $X \cdot v := Av$ (or $X \cdot v = Bv$).

Show that V_A is isomorphic to V_B as F[X] modules if and only if $B = UAU^{-1}$ for some matrix $U \in GL(n, F)$.

Solution:

Let $\varphi: V_A \to V_B$ be an F[X]-module isomorphism. This means φ is a bijection and for all $\mathbf{v}, \mathbf{v}' \in V$ and $f(X) \in F[X]$ we have

$$\varphi(\mathbf{v} + \mathbf{v}') = \varphi(\mathbf{v}) + \varphi(\mathbf{v}'), \quad \varphi(f(X)\mathbf{v}) = f(X)\varphi(\mathbf{v}).$$

Polynomials are sums of monomials and knowing multiplication by X determines multiplication by X^i for all $i \ge 1$, the above conditions on φ are equivalent to

$$\varphi(\mathbf{v} + \mathbf{v}') = \varphi(\mathbf{v}) + \varphi(\mathbf{v}'), \quad \varphi(c\mathbf{v}) = c\varphi(\mathbf{v}), \quad \varphi(X\mathbf{v}) = X\varphi(\mathbf{v})$$

for all v and v' in V and c in F. The first two equations say φ is F-linear and the last equation says $\varphi(A\mathbf{v}) = B\varphi(\mathbf{v})$ for all $\mathbf{v} \in V$. So $\varphi: V \to V$ is an F-linear bijection and $\varphi(A\mathbf{v}) = B\varphi(\mathbf{v})$ for all $\mathbf{v} \in V$. Since $V = F^n$, every F-linear map $\varphi: V \to V$ is a matrix transformation: for some $U \in Mat_n(F)$,

$$\varphi(\mathbf{v}) = U\mathbf{v}.$$

Indeed, if there were such a matrix U then letting v run over the standard basis e_1, \ldots, e_n tells us the *i*-th column of U is $\varphi(\mathbf{e}_i)$, and the other way around define U to be the matrix

$$\left[\varphi\left(\mathbf{e}_{1}\right)\cdots\varphi\left(\mathbf{e}_{n}\right)\right]\in\mathrm{Mat}_{n\times n}(F)$$

having *i*-th column $\varphi(\mathbf{e}_i)$. Then φ and U have the same values on the \mathbf{e}_i 's and both are linear on F^n , so they have the same value at every vector in F^n . Since φ is a bijection, U is invertible, i.e., $U \in GL_n(F)$. Now the condition $\varphi(A\mathbf{v}) = B\varphi(\mathbf{v})$ for all $\mathbf{v} \in V$ means

$$U(A\mathbf{v}) = B(U\mathbf{v}) \iff A\mathbf{v} = U^{-1}BU\mathbf{v}$$

for all $\mathbf{v} \in V = F^n$. Letting $\mathbf{v} = \mathbf{e}_1, \dots, \mathbf{e}_n$ tells us that A and $U^{-1}BU$ have the same *i*-th column for all i, so they are the same matrix: $A = U^{-1}BU$, so $B = UAU^{-1}$.

Conversely, suppose there is an invertible matrix $U \in \operatorname{GL}_n(F)$ with $B = UAU^{-1}$. Define $\varphi: V_A \to V_B$ by $\varphi(\mathbf{v}) = U\mathbf{v}$. The matrix U is invertible, so this is a bijection. It is also F-linear. To show

$$\varphi(f(X)\mathbf{v}) = f(X)\varphi(\mathbf{v})$$

for all $\mathbf{v} \in V$ and $f(X) \in F[X]$, it suffices by *F*-linearity to check

$$\varphi\left(X^{i}\mathbf{v}\right) = X^{i}\varphi(\mathbf{v})$$

for all $\mathbf{v} \in V$ and for $i \ge 0$. For this to hold, it suffices to check $\varphi(X\mathbf{v}) = X\varphi(\mathbf{v})$ for all $\mathbf{v} \in V$. This last condition says that $\varphi(A\mathbf{v}) = B\varphi(\mathbf{v})$ for all $\mathbf{v} \in V$. Since $B = UAU^{-1}$, i.e. UA = BU, so

$$\varphi(A\mathbf{v}) = U(A\mathbf{v}) = (UA)\mathbf{v} = (BU)\mathbf{v} = B(U\mathbf{v}) = B\varphi(\mathbf{v})$$

for all $\mathbf{v} \in V$.

2. Let R be a non-zero commutative ring with $0 \neq 1$. Show that if $\mathbb{R}^n \simeq \mathbb{R}^m$ as R-modules then m = n.

Solution:

Let $M := R^m$, $N := R^m$ and let I be a maximal ideal of R. Let V = M/IM. Here we denote by

$$IM = \left\{ \sum_{i=1}^{k} a_i x_i | a_i \in I, x_i \in M, k \in \mathbb{N} \right\}$$

i.e all finite *I*-linear combinations of elements of *M*. It is easy to verify that *V* is a vector space over the field K = R/I where the scalar multiplication is defined via (r + I)(x + IM) = rx + IM for $r + I \in K$ and $x + IM \in M/IM$. This is well defined since if $r \in I$ or $x \in IM$ then $rx \in IM$, and hence (r + I)(x + IM) = IM.

Now one can also see that if $\{x_i\}$ is a basis of M over R, then $\bar{x}_i = x_i + IM$ is a basis of V = M/IM. Hence V is a vector space of dimension m over K. Similarly we get that N/IN is a vector space of dimension n.

The isomorphism of $R^m = M \simeq N = R^n$ restricts to an isomorphism of $IM \simeq IN$ and we get an induced isomorphism $M/IM \simeq N/IN$. Since M/IM and I/IN are isomorphic finite dimensional vector spaces, they have the same dimension and we get that m = n.

- 3. Let R be a ring, let M be an R-module and let N be a submodule of M. Prove:
 - (a) If M is finitely generated, then M/N is finitely generated.
 - (b) If N and M/N are finitely generated, then M is finitely generated.
 - (c) If N and M/N are free R-modules, then M is a free R-module.

Solution: Let $\varphi: M \to M/N, m \mapsto m + N$ denote the quotient map.

We will prove the following more general statements:

- (a') If M has a generating subset of cardinality r, then so does M/N.
- (b') If N and M/N have generating subsets of cardinalities respectively r and s, then M has a generating subset of cardinality r + s.
- (c') If N and M/N have bases of cardinalities respectively r and s, then M has a basis of cardinality r + s.

Proof. (a') The images in M/N of a generating subset of M generate M/N, since the canonical morphism from M to M/N is surjective. In particular, M/N is finitely generated if M is.

(b') Let (n_1, \ldots, n_r) be a generating family of N, and let (m_1, \ldots, m_s) be a family of elements of M such that $(\varphi(m_1), \ldots, \varphi(m_s))$ generate M/N. Let us show that the family $(m_1, \ldots, m_s, n_1, \ldots, n_r)$ generates M.

Let $m \in M$. By hypothesis, $\varphi(m)$ is a linear combination of $\varphi(m_1), \ldots, \varphi(m_s)$. There thus exist elements $a_i \in \mathbb{R}$ such that $\varphi(m) = \sum_{i=1}^s \varphi(m_i) a_i$. Consequently, $n = m - \sum_{i=1}^s m_i a_i$ belongs to N and there exist elements $b_j \in \mathbb{R}$ such that $n = \sum_{j=1}^r n_j b_j$. Then $m = \sum_{i=1}^s m_i a_i + \sum_{j=1}^r n_j b_j$ is a linear combination of the m_i and of the n_j .

(c') Moreover, let us assume that (n_1, \ldots, n_r) be a basis of N and that $(\varphi(m_1), \ldots, \varphi(m_s))$ be a basis of M/N; let us show that $(m_1, \ldots, m_s, n_1, \ldots, n_r)$ is a basis of M. Since we already proved that this family generates M, it remains to show that it is free. So let $0 = \sum_{i=1}^{s} m_i a_i + \sum_{j=1}^{r} n_j b_j$ be a linear dependence relation between these elements. Applying φ , we get a linear dependence relation $0 = \sum_{i=1}^{s} \varphi(m_i) a_i$ for the family $\varphi(m_i)$. Since this family is free, one has $a_i = 0$ for every *i*. It follows that $0 = \sum_{j=1}^{r} n_j b_j$; since the family (n_1, \ldots, n_r) is free, $b_j = 0$ for every *j*. The considered linear dependence relation is thus trivial, as was to be shown.

4. Let R be a PID. Show that every submodule N of a free R-module M of rank n is finitely generated with at most n generators.

Hint: Apply Exercise **3**.

Solution:

It suffices to show that every submodule N of R^n is free of rank $\leq n$; and we will prove this by induction on n.

If n = 0, then $R^n = 0$, hence N = 0 so that N is a free R-module of rank 0.

Assume that n = 1. Then N is an ideal of R. If N = 0, then N is free of rank 0. Otherwise, since R is a PID, there exists a nonzero element $r \in R$ such that N = (r). Since R is a domain, the map $a \mapsto ra$ is an isomorphism from R to N, so that N is free of rank 1.

Let now *n* be an integer ≥ 2 and let us assume that for any integer r < n, every submodule of R^r is free of rank less or equal than *r*. Let N be a submodule of R^n . Let $f : R^n \to R$ be the linear form given by $(a_1, \ldots, a_n) \mapsto a_n$; it is surjective and its kernel is the submodule $M_0 = R^{n-1} \times \{0\}$ of R^n . By induction, the ideal f(N) of R is free of rank ≤ 1 . The submodule $N_0 = N \cap M_0$ of M_0 is isomorphic to a submodule of R^{n-1} , so is free of rank $\leq n-1$ by our induction hypothesis.

Since the module $M_0 = \ker(f)$ is free of rank $\leq n - 1$, and f(N) is free of rank ≤ 1 , we have that N is free of rank $\leq n$ by Exercise 3. part (c).

5. Let R be a commutative ring. An R-module M is called a *Noetherian* R-module if it satisfies the ascending chain condition on submodules, i.e., whenever

$$M_1 \subset M_2 \subset \cdots$$

is an increasing chain of submodules of M, then there is a positive integer m such that for all $k \ge m$ we have $M_k = M_m$.

Show that the following are equivalent for an R module M:

- (a) M is a Noetherian R-module.
- (b) Every non empty subset of modules of M contains a maximal element under inclusion.
- (c) Every submodule of M is finitely generated.

Solution:

 $[(5.a) \Rightarrow (5.c)]$ Let us assume that M is Noetherian, that is, any nonempty family of submodules of M admits a maximal element.

Let N be a submodule of M and consider the family S_N of all finitely generated submodules of N. This family is nonempty because the null module 0 belongs to S_N . By hypothesis, S_N has a maximal element, say, N'. By definition, the *R*-module N' is a finitely generated submodule of N and no submodule P of N such that N' \subseteq P is finitely generated. For every $m \in N$, the R-module P = N' + Rm satisfies N' \subset P \subset N and is finitely generated; by maximality of N', one has P = N', hence $m \in N'$. This proves that N' = N, hence N is finitely generated.

 $[(5.c) \Rightarrow (5.b)]$ Let us assume that every submodule of M is finitely generated. Let $\{M_n\}_{n \in \mathbb{N}}$ be an increasing sequence of submodules of M. Let $N = \bigcup M_n$ be the union of these modules M_n .

Since the family is increasing, N is a submodule of M. By hypothesis, N is finitely generated. Consequently, there exists a finite subset $S \subset N$ such that $N = \langle S \rangle$. For every $s \in S$, there exists an integer $n_s \in N$ such that $s \in M_{n_s}$; then $s \in M_n$ for any integer n such that $n \ge n_s$. Let us set $v = \sup(n_s)$, so that $S \subset M_v$. It follows that $N = \langle S \rangle$ is contained in M_v . Finally, for $n \ge v$, the inclusions $M_v \subset M_n \subset N \subset M_v$, for $n \ge v$ show that $M_n = M_v$. Hence we have shown that the sequence $\{M_n\}$ is stationary.

 $[(5.b) \Rightarrow (5.a)]$ Let us assume that any increasing sequence of submodules of M is stationary and let $\{M_i\}_{i \in I}$ be a family of submodules of M indexed by a nonempty set I.

Assuming by contradiction that this family has no maximal element, we are going to construct from the family $\{M_i\}$ a strictly increasing sequence of submodules of M. Fix $i_1 \in I$. By hypothesis, M_{i_1} is not a maximal element of the family $\{M_i\}$, so that there exists $i_2 \in I$ such that $M_{i_1} \subsetneq M_{i_2}$. Then M_{i_2} is not maximal neither, hence the existence of $i_3 \in I$ such that $M_{i_2} \subsetneq M_{i_3}$ and we can continue on like this. Hence, we obtain a strictly increasing sequence $\{M_{i_n}\}_{n \in \mathbb{N}}$ of submodules of M, hence the desired contradiction.

6. Show that if R is a PID then every nonempty set of ideals of R has a maximal element and that R is Noetherian.

Solution: Let I be an ideal of R. Since R is a PID, the ideal I is principal and hence finitely generated. Hence by question 5. we obtain that R is Noetherian (by part (a)) and every nonempty set of ideals of R has a maximal element under inclusion (by part (b)).