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Solutions Exercise sheet 12

1. Let V be vector space of dimension n over the field F , let A,B P MatnˆnpF q be matrices
corresponding to two linear transformations on V . Let VA and VB be the vector space V
viewed as an F rXs module using A and B respectively. i.e. the action of x P F rXs on v P V
is defined as X ¨ v :“ Av (or X ¨ v “ Bv).

Show that VA is isomoprhic to VB as F rXs modules if and only if B “ UAU´1 for some
matrix U P GLpn, F q.

Solution:

Let φ : VA Ñ VB be an F rXs-module isomorphism. This means φ is a bijection and for all
v,v1 P V and fpXq P F rXs we have

φ pv ` v1
q “ φpvq ` φ pv1

q , φpfpXqvq “ fpXqφpvq.

Polynomials are sums of monomials and knowing multiplication by X determines multipli-
cation by X i for all i ě 1, the above conditions on φ are equivalent to

φ pv ` v1
q “ φpvq ` φ pv1

q , φpcvq “ cφpvq, φpXvq “ Xφpvq

for all v and v1 in V and c in F . The first two equations say φ is F -linear and the last
equation says φpAvq “ Bφpvq for all v P V . So φ : V Ñ V is an F -linear bijection and
φpAvq “ Bφpvq for all v P V . Since V “ F n, every F -linear map φ : V Ñ V is a matrix
transformation: for some U P MatnpF q,

φpvq “ Uv.

Indeed, if there were such a matrix U then letting v run over the standard basis e1, . . . , en
tells us the i-th column of U is φ peiq, and the other way around define U to be the matrix

rφ pe1q ¨ ¨ ¨φ penqs P MatnˆnpF q

having i-th column φ peiq. Then φ and U have the same values on the ei’s and both are
linear on F n, so they have the same value at every vector in F n. Since φ is a bijection, U is
invertible, i.e., U P GLnpF q. Now the condition φpAvq “ Bφpvq for all v P V means

UpAvq “ BpUvq ðñ Av “ U´1BUv

for all v P V “ F n. Letting v “ e1, . . . , en tells us that A and U´1BU have the same i-th
column for all i, so they are the same matrix: A “ U´1BU , so B “ UAU´1.

Conversely, suppose there is an invertible matrix U P GLnpF q with B “ UAU´1. Define
φ : VA Ñ VB by φpvq “ Uv. The matrix U is invertible, so this is a bijection. It is also
F -linear. To show

φpfpXqvq “ fpXqφpvq
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for all v P V and fpXq P F rXs, it suffices by F -linearity to check

φ
`

X iv
˘

“ X iφpvq

for all v P V and for i ě 0. For this to hold, it suffices to check φpXvq “ Xφpvq for all
v P V . This last condition says that φpAvq “ Bφpvq for all v P V . Since B “ UAU´1, i.e.
UA “ BU , so

φpAvq “ UpAvq “ pUAqv “ pBUqv “ BpUvq “ Bφpvq

for all v P V .

2. Let R be a non-zero commutative ring with 0 ‰ 1. Show that if Rn » Rm as R-modules
then m “ n.

Solution:

Let M :“ Rm, N :“ Rm and let I be a maximal ideal of R. Let V “ M{IM . Here we
denote by

IM “

#

k
ÿ

i“1

aixi|ai P I, xi P M,k P N

+

i.e all finite I-linear combinations of elements of M. It is easy to verify that V is a vector
space over the field K “ R{I where the scalar multiplication is defined via pr ` Iqpx `

IMq “ rx ` IM for r ` I P K and x ` IM P M{IM . This is well defined since if r P I
or x P IM then rx P IM , and hence pr ` Iqpx ` IMq “ IM .

Now one can also see that if txiu is a basis of M over R, then x̄i “ xi ` IM is a basis
of V “ M{IM . Hence V is a vector space of dimension m over K. Similarly we get that
N{IN is a vector space of dimension n.

The isomorphism of Rm “ M » N “ Rn restricts to an isomorphism of IM » IN and
we get an induced isomorphism M{IM » N{IN . Since M{IM and I{IN are isomorphic
finite dimensional vector spaces, they have the same dimension and we get that m “ n.

3. Let R be a ring, let M be an R-module and let N be a submodule of M . Prove:

(a) If M is finitely generated, then M{N is finitely generated.

(b) If N and M{N are finitely generated, then M is finitely generated.

(c) If N and M{N are free R-modules, then M is a free R-module.

Solution: Let φ : M Ñ M{N,m ÞÑ m ` N denote the quotient map.

We will prove the following more general statements:

(a’) If M has a generating subset of cardinality r, then so does M{N.

(b’) If N and M{N have generating subsets of cardinalities respectively r and s, then M has
a generating subset of cardinality r ` s.

(c’) If N and M{N have bases of cardinalities respectively r and s, then M has a basis of
cardinality r ` s.
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Proof. (a’) The images in M{N of a generating subset of M generate M{N , since the cano-
nical morphism from M to M{N is surjective. In particular, M{N is finitely generated if M
is.

(b’) Let pn1, . . . , nrq be a generating family of N, and let pm1, . . . ,msq be a family of ele-
ments of M such that pφ pm1q , . . . , φ pmsqq generate M{N. Let us show that the family
pm1, . . . ,ms, n1, . . . , nrq generates M.

Let m P M. By hypothesis, φpmq is a linear combination of φ pm1q , . . . , φ pmsq. There
thus exist elements ai P R such that φpmq “

řs
i“1 φ pmiq ai. Consequently, n “ m ´

řs
i“1miai belongs to N and there exist elements bj P R such that n “

řr
j“1 njbj . Then

m “
řs

i“1miai `
řr

j“1 njbj is a linear combination of the mi and of the nj .

(c’) Moreover, let us assume that pn1, . . . , nrq be a basis of N and that pφ pm1q , . . . , φ pmsqq

be a basis of M{N; let us show that pm1, . . . ,ms, n1, . . . , nrq is a basis of M. Since we
already proved that this family generates M , it remains to show that it is free. So let 0 “
řs

i“1miai `
řr

j“1 njbj be a linear dependence relation between these elements. Applying
φ, we get a linear dependence relation 0 “

řs
i“1 φ pmiq ai for the family φ pmiq. Since this

family is free, one has ai “ 0 for every i. It follows that 0 “
řr

j“1 njbj; since the family
pn1, . . . , nrq is free, bj “ 0 for every j. The considered linear dependence relation is thus
trivial, as was to be shown.

4. Let R be a PID. Show that every submodule N of a free R-module M of rank n is finitely
generated with at most n generators.

Hint: Apply Exercise 3.

Solution:

It suffices to show that every submodule N of Rn is free of rank ď n; and we will prove this
by induction on n.

If n “ 0, then Rn “ 0, hence N “ 0 so that N is a free R-module of rank 0.

Assume that n “ 1. Then N is an ideal of R. If N “ 0, then N is free of rank 0. Otherwise,
since R is a PID, there exists a nonzero element r P R such that N “ prq. Since R is a
domain, the map a ÞÑ ra is an isomorphism from R to N , so that N is free of rank 1.

Let now n be an integer ě 2 and let us assume that for any integer r ă n, every submodule
of Rr is free of rank less or equal than r. Let N be a submodule of Rn. Let f : Rn Ñ R be
the linear form given by pa1, . . . , anq ÞÑ an; it is surjective and its kernel is the submodule
M0 “ Rn´1 ˆ t0u of Rn. By induction, the ideal fpNq of R is free of rank ď 1. The
submodule N0 “ N X M0 of M0 is isomorphic to a submodule of Rn´1, so is free of rank
ď n ´ 1 by our induction hypothesis.

Since the module M0 “ kerpfq is free of rank ď n ´ 1, and fpNq is free of rank ď 1, we
have that N is free of rank ď n by Exercise 3. part (c).

5. Let R be a commutative ring. An R-module M is called a Noetherian R-module if it satisfies
the ascending chain condition on submodules, i.e., whenever

M1 Ă M2 Ă ¨ ¨ ¨
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is an increasing chain of submodules of M , then there is a positive integer m such that for
all k ě m we have Mk “ Mm.

Show that the following are equivalent for an R module M :

(a) M is a Noetherian R-module.

(b) Every non empty subset of modules of M contains a maximal element under inclusion.

(c) Every submodule of M is finitely generated.

Solution:

[(5.a) ñ (5.c)] Let us assume that M is Noetherian, that is, any nonempty family of submo-
dules of M admits a maximal element.

Let N be a submodule of M and consider the family SN of all finitely generated submodules
of N. This family is nonempty because the null module 0 belongs to SN . By hypothesis,
SN has a maximal element, say, N1. By definition, the R-module N1 is a finitely generated
submodule of N and no submodule P of N such that N1 Ĺ P is finitely generated. For every
m P N, the R-module P “ N1 ` Rm satisfies N1 Ă P Ă N and is finitely generated; by
maximality of N1, one has P “ N1, hence m P N1. This proves that N1 “ N, hence N is
finitely generated.

[(5.c) ñ (5.b)] Let us assume that every submodule of M is finitely generated. Let tMnunPN

be an increasing sequence of submodules of M. Let N “
Ť

Mn be the union of these modules
Mn.

Since the family is increasing, N is a submodule of M. By hypothesis, N is finitely generated.
Consequently, there exists a finite subset S Ă N such that N “ xSy. For every s P S, there
exists an integer ns P N such that s P Mns; then s P Mn for any integer n such that n ě ns.
Let us set v “ sup pnsq, so that S Ă Mv. It follows that N “ xSy is contained in Mv. Finally,
for n ě v, the inclusions Mv Ă Mn Ă N Ă Mv, for n ě v show that Mn “ Mv. Hence we
have shown that the sequence tMnu is stationary.

[(5.b) ñ (5.a)] Let us assume that any increasing sequence of submodules of M is stationary
and let tMiuiPI be a family of submodules of M indexed by a nonempty set I.

Assuming by contradiction that this family has no maximal element, we are going to con-
struct from the family tMiu a strictly increasing sequence of submodules of M. Fix i1 P I. By
hypothesis, Mi1 is not a maximal element of the family tMiu, so that there exists i2 P I such
that Mi1 Ĺ Mi2 . Then Mi2 is not maximal neither, hence the existence of i3 P I such that
Mi2 Ĺ Mi3 and we can continue on like this. Hence, we obtain a strictly increasing sequence
tMinunPN of submodules of M, hence the desired contradiction.

6. Show that if R is a PID then every nonempty set of ideals of R has a maximal element and
that R is Noetherian.

Solution: Let I be an ideal of R. Since R is a PID, the ideal I is principal and hence finitely
generated. Hence by question 5. we obtain that R is Noetherian (by part (a)) and every
nonempty set of ideals of R has a maximal element under inclusion (by part (b)).
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