Solutions Exercise sheet 12

1. Let V be vector space of dimension n over the field F, let $A, B \in \operatorname{Mat}_{n \times n}(F)$ be matrices corresponding to two linear transformations on V. Let V_{A} and V_{B} be the vector space V viewed as an $F[X]$ module using A and B respectively. i.e. the action of $x \in F[X]$ on $v \in V$ is defined as $X \cdot v:=A v($ or $X \cdot v=B v)$.

Show that V_{A} is isomoprhic to V_{B} as $F[X]$ modules if and only if $B=U A U^{-1}$ for some matrix $U \in \mathrm{GL}(n, F)$.

Solution:

Let $\varphi: V_{A} \rightarrow V_{B}$ be an $F[X]$-module isomorphism. This means φ is a bijection and for all $\mathbf{v}, \mathbf{v}^{\prime} \in V$ and $f(X) \in F[X]$ we have

$$
\varphi\left(\mathbf{v}+\mathbf{v}^{\prime}\right)=\varphi(\mathbf{v})+\varphi\left(\mathbf{v}^{\prime}\right), \quad \varphi(f(X) \mathbf{v})=f(X) \varphi(\mathbf{v})
$$

Polynomials are sums of monomials and knowing multiplication by X determines multiplication by X^{i} for all $i \geqslant 1$, the above conditions on φ are equivalent to

$$
\varphi\left(\mathbf{v}+\mathbf{v}^{\prime}\right)=\varphi(\mathbf{v})+\varphi\left(\mathbf{v}^{\prime}\right), \quad \varphi(c \mathbf{v})=c \varphi(\mathbf{v}), \quad \varphi(X \mathbf{v})=X \varphi(\mathbf{v})
$$

for all \mathbf{v} and \mathbf{v}^{\prime} in V and c in F. The first two equations say φ is F-linear and the last equation says $\varphi(A \mathbf{v})=B \varphi(\mathbf{v})$ for all $\mathbf{v} \in V$. So $\varphi: V \rightarrow V$ is an F-linear bijection and $\varphi(A \mathbf{v})=B \varphi(\mathbf{v})$ for all $\mathbf{v} \in V$. Since $V=F^{n}$, every F-linear map $\varphi: V \rightarrow V$ is a matrix transformation: for some $U \in \operatorname{Mat}_{n}(F)$,

$$
\varphi(\mathbf{v})=U \mathbf{v}
$$

Indeed, if there were such a matrix U then letting \mathbf{v} run over the standard basis $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ tells us the i-th column of U is $\varphi\left(\mathbf{e}_{i}\right)$, and the other way around define U to be the matrix

$$
\left[\varphi\left(\mathbf{e}_{1}\right) \cdots \varphi\left(\mathbf{e}_{n}\right)\right] \in \operatorname{Mat}_{n \times n}(F)
$$

having i-th column $\varphi\left(\mathbf{e}_{i}\right)$. Then φ and U have the same values on the \mathbf{e}_{i} 's and both are linear on F^{n}, so they have the same value at every vector in F^{n}. Since φ is a bijection, U is invertible, i.e., $U \in \operatorname{GL}_{n}(F)$. Now the condition $\varphi(A \mathbf{v})=B \varphi(\mathbf{v})$ for all $\mathbf{v} \in V$ means

$$
U(A \mathbf{v})=B(U \mathbf{v}) \Longleftrightarrow A \mathbf{v}=U^{-1} B U \mathbf{v}
$$

for all $\mathbf{v} \in V=F^{n}$. Letting $\mathbf{v}=\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ tells us that A and $U^{-1} B U$ have the same i-th column for all i, so they are the same matrix: $A=U^{-1} B U$, so $B=U A U^{-1}$.
Conversely, suppose there is an invertible matrix $U \in \mathrm{GL}_{n}(F)$ with $B=U A U^{-1}$. Define $\varphi: V_{A} \rightarrow V_{B}$ by $\varphi(\mathbf{v})=U \mathbf{v}$. The matrix U is invertible, so this is a bijection. It is also F-linear. To show

$$
\varphi(f(X) \mathbf{v})=f(X) \varphi(\mathbf{v})
$$

for all $\mathbf{v} \in V$ and $f(X) \in F[X]$, it suffices by F-linearity to check

$$
\varphi\left(X^{i} \mathbf{v}\right)=X^{i} \varphi(\mathbf{v})
$$

for all $\mathbf{v} \in V$ and for $i \geqslant 0$. For this to hold, it suffices to check $\varphi(X \mathbf{v})=X \varphi(\mathbf{v})$ for all $\mathbf{v} \in V$. This last condition says that $\varphi(A \mathbf{v})=B \varphi(\mathbf{v})$ for all $\mathbf{v} \in V$. Since $B=U A U^{-1}$, i.e. $U A=B U$, so

$$
\varphi(A \mathbf{v})=U(A \mathbf{v})=(U A) \mathbf{v}=(B U) \mathbf{v}=B(U \mathbf{v})=B \varphi(\mathbf{v})
$$

for all $\mathbf{v} \in V$.
2. Let R be a non-zero commutative ring with $0 \neq 1$. Show that if $R^{n} \simeq R^{m}$ as R-modules then $m=n$.

Solution:

Let $M:=R^{m}, N:=R^{m}$ and let I be a maximal ideal of R. Let $V=M / I M$. Here we denote by

$$
I M=\left\{\sum_{i=1}^{k} a_{i} x_{i} \mid a_{i} \in I, x_{i} \in M, k \in \mathbb{N}\right\}
$$

i.e all finite I-linear combinations of elements of M. It is easy to verify that V is a vector space over the field $K=R / I$ where the scalar multiplication is defined via $(r+I)(x+$ $I M)=r x+I M$ for $r+I \in K$ and $x+I M \in M / I M$. This is well defined since if $r \in I$ or $x \in I M$ then $r x \in I M$, and hence $(r+I)(x+I M)=I M$.
Now one can also see that if $\left\{x_{i}\right\}$ is a basis of M over R, then $\bar{x}_{i}=x_{i}+I M$ is a basis of $V=M / I M$. Hence V is a vector space of dimension m over K. Similarly we get that $N / I N$ is a vector space of dimension n.
The isomorphism of $R^{m}=M \simeq N=R^{n}$ restricts to an isomorphism of $I M \simeq I N$ and we get an induced isomorphism $M / I M \simeq N / I N$. Since $M / I M$ and $I / I N$ are isomorphic finite dimensional vector spaces, they have the same dimension and we get that $m=n$.
3. Let R be a ring, let M be an R-module and let N be a submodule of M. Prove:
(a) If M is finitely generated, then M / N is finitely generated.
(b) If N and M / N are finitely generated, then M is finitely generated.
(c) If N and M / N are free R-modules, then M is a free R-module.

Solution: Let $\varphi: M \rightarrow M / N, m \mapsto m+N$ denote the quotient map.
We will prove the following more general statements:
(a') If M has a generating subset of cardinality r, then so does M / N.
(b') If N and M / N have generating subsets of cardinalities respectively r and s, then M has a generating subset of cardinality $r+s$.
(c') If N and M / N have bases of cardinalities respectively r and s, then M has a basis of cardinality $r+s$.

Proof. (a’) The images in M / N of a generating subset of M generate M / N, since the canonical morphism from M to M / N is surjective. In particular, M / N is finitely generated if M is.
(b') Let $\left(n_{1}, \ldots, n_{r}\right)$ be a generating family of N , and let $\left(m_{1}, \ldots, m_{s}\right)$ be a family of elements of M such that $\left(\varphi\left(m_{1}\right), \ldots, \varphi\left(m_{s}\right)\right)$ generate M / N. Let us show that the family $\left(m_{1}, \ldots, m_{s}, n_{1}, \ldots, n_{r}\right)$ generates M.
Let $m \in \mathrm{M}$. By hypothesis, $\varphi(m)$ is a linear combination of $\varphi\left(m_{1}\right), \ldots, \varphi\left(m_{s}\right)$. There thus exist elements $a_{i} \in \mathrm{R}$ such that $\varphi(m)=\sum_{i=1}^{s} \varphi\left(m_{i}\right) a_{i}$. Consequently, $n=m-$ $\sum_{i=1}^{s} m_{i} a_{i}$ belongs to N and there exist elements $b_{j} \in \mathrm{R}$ such that $n=\sum_{j=1}^{r} n_{j} b_{j}$. Then $m=\sum_{i=1}^{s} m_{i} a_{i}+\sum_{j=1}^{r} n_{j} b_{j}$ is a linear combination of the m_{i} and of the n_{j}.
(c') Moreover, let us assume that $\left(n_{1}, \ldots, n_{r}\right)$ be a basis of N and that $\left(\varphi\left(m_{1}\right), \ldots, \varphi\left(m_{s}\right)\right)$ be a basis of M / N; let us show that $\left(m_{1}, \ldots, m_{s}, n_{1}, \ldots, n_{r}\right)$ is a basis of M. Since we already proved that this family generates M, it remains to show that it is free. So let $0=$ $\sum_{i=1}^{s} m_{i} a_{i}+\sum_{j=1}^{r} n_{j} b_{j}$ be a linear dependence relation between these elements. Applying φ, we get a linear dependence relation $0=\sum_{i=1}^{s} \varphi\left(m_{i}\right) a_{i}$ for the family $\varphi\left(m_{i}\right)$. Since this family is free, one has $a_{i}=0$ for every i. It follows that $0=\sum_{j=1}^{r} n_{j} b_{j}$; since the family $\left(n_{1}, \ldots, n_{r}\right)$ is free, $b_{j}=0$ for every j. The considered linear dependence relation is thus trivial, as was to be shown.
4. Let R be a PID. Show that every submodule N of a free R-module M of rank n is finitely generated with at most n generators.

Hint: Apply Exercise 3.

Solution:

It suffices to show that every submodule N of R^{n} is free of rank $\leqslant n$; and we will prove this by induction on n.

If $n=0$, then $R^{n}=0$, hence $\mathrm{N}=0$ so that N is a free R-module of rank 0 .
Assume that $n=1$. Then N is an ideal of R. If $\mathrm{N}=0$, then N is free of rank 0 . Otherwise, since R is a PID, there exists a nonzero element $r \in R$ such that $\mathrm{N}=(r)$. Since R is a domain, the map $a \mapsto r a$ is an isomorphism from R to N, so that N is free of rank 1 .
Let now n be an integer $\geqslant 2$ and let us assume that for any integer $r<n$, every submodule of R^{r} is free of rank less or equal than r. Let N be a submodule of R^{n}. Let $f: R^{n} \rightarrow R$ be the linear form given by $\left(a_{1}, \ldots, a_{n}\right) \mapsto a_{n}$; it is surjective and its kernel is the submodule $\mathrm{M}_{0}=R^{n-1} \times\{0\}$ of R^{n}. By induction, the ideal $f(\mathrm{~N})$ of R is free of rank $\leqslant 1$. The submodule $\mathrm{N}_{0}=\mathrm{N} \cap \mathrm{M}_{0}$ of M_{0} is isomorphic to a submodule of R^{n-1}, so is free of rank $\leqslant n-1$ by our induction hypothesis.
Since the module $M_{0}=\operatorname{ker}(f)$ is free of rank $\leqslant n-1$, and $f(N)$ is free of rank $\leqslant 1$, we have that N is free of rank $\leqslant n$ by Exercise 3. part (c).
5. Let R be a commutative ring. An R-module M is called a Noetherian R-module if it satisfies the ascending chain condition on submodules, i.e., whenever

$$
M_{1} \subset M_{2} \subset \ldots
$$

is an increasing chain of submodules of M, then there is a positive integer m such that for all $k \geqslant m$ we have $M_{k}=M_{m}$.
Show that the following are equivalent for an R module M :
(a) M is a Noetherian R-module.
(b) Every non empty subset of modules of M contains a maximal element under inclusion.
(c) Every submodule of M is finitely generated.

Solution:

$[(5 . \mathrm{a}) \Rightarrow(\mathbf{5} . \mathrm{c})]$ Let us assume that M is Noetherian, that is, any nonempty family of submodules of M admits a maximal element.

Let N be a submodule of M and consider the family \mathcal{S}_{N} of all finitely generated submodules of N . This family is nonempty because the null module 0 belongs to \mathcal{S}_{N}. By hypothesis, \mathcal{S}_{N} has a maximal element, say, N^{\prime}. By definition, the R-module N^{\prime} is a finitely generated submodule of N and no submodule P of N such that $\mathrm{N}^{\prime} \subsetneq \mathrm{P}$ is finitely generated. For every $m \in \mathrm{~N}$, the R -module $\mathrm{P}=\mathrm{N}^{\prime}+\mathrm{R} m$ satisfies $\mathrm{N}^{\prime} \subset \mathrm{P} \subset \mathrm{N}$ and is finitely generated; by maximality of N^{\prime}, one has $\mathrm{P}=\mathrm{N}^{\prime}$, hence $m \in \mathrm{~N}^{\prime}$. This proves that $\mathrm{N}^{\prime}=\mathrm{N}$, hence N is finitely generated.
$[(\mathbf{5} . \mathrm{c}) \Rightarrow \mathbf{(5 . b)}]$ Let us assume that every submodule of M is finitely generated. Let $\left\{\mathrm{M}_{n}\right\}_{n \in \mathbf{N}}$ be an increasing sequence of submodules of M . Let $\mathrm{N}=\bigcup \mathrm{M}_{n}$ be the union of these modules M_{n}.

Since the family is increasing, N is a submodule of M . By hypothesis, N is finitely generated. Consequently, there exists a finite subset $S \subset \mathrm{~N}$ such that $\mathrm{N}=\langle\mathrm{S}\rangle$. For every $s \in \mathrm{~S}$, there exists an integer $n_{s} \in \mathrm{~N}$ such that $s \in \mathrm{M}_{n_{s}}$; then $s \in \mathrm{M}_{n}$ for any integer n such that $n \geqslant n_{s}$. Let us set $v=\sup \left(n_{s}\right)$, so that $\mathrm{S} \subset \mathrm{M}_{v}$. It follows that $\mathrm{N}=\langle S\rangle$ is contained in M_{v}. Finally, for $n \geqslant v$, the inclusions $\mathrm{M}_{v} \subset \mathrm{M}_{n} \subset \mathrm{~N} \subset \mathrm{M}_{v}$, for $n \geqslant v$ show that $\mathrm{M}_{n}=\mathrm{M}_{v}$. Hence we have shown that the sequence $\left\{\mathrm{M}_{n}\right\}$ is stationary.
$[(5 . b) \Rightarrow(5 . a)]$ Let us assume that any increasing sequence of submodules of M is stationary and let $\left\{\mathrm{M}_{i}\right\}_{i \in \mathrm{I}}$ be a family of submodules of M indexed by a nonempty set I.
Assuming by contradiction that this family has no maximal element, we are going to construct from the family $\left\{\mathrm{M}_{i}\right\}$ a strictly increasing sequence of submodules of M. Fix $i_{1} \in \mathrm{I}$. By hypothesis, $\mathrm{M}_{i_{1}}$ is not a maximal element of the family $\left\{\mathrm{M}_{i}\right\}$, so that there exists $i_{2} \in \mathrm{I}$ such that $\mathrm{M}_{i_{1}} \subsetneq \mathrm{M}_{i_{2}}$. Then $\mathrm{M}_{i_{2}}$ is not maximal neither, hence the existence of $i_{3} \in \mathrm{I}$ such that $\mathrm{M}_{i_{2}} \subsetneq \mathrm{M}_{i_{3}}$ and we can continue on like this. Hence, we obtain a strictly increasing sequence $\left\{\mathrm{M}_{i_{n}}\right\}_{n \in \mathbf{N}}$ of submodules of M , hence the desired contradiction.
6. Show that if R is a PID then every nonempty set of ideals of R has a maximal element and that R is Noetherian.
Solution: Let I be an ideal of R. Since R is a PID, the ideal I is principal and hence finitely generated. Hence by question 5. we obtain that R is Noetherian (by part (a)) and every nonempty set of ideals of R has a maximal element under inclusion (by part (b)).

