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Solutions Review exercise sheet

1. Show that X* + 1 € Q[X] is irreducible. Show that X* + 1 is reducible in IF,,[ X] for every
prime p.

Solution: The standard approach to prove that X* + 1 is irreducible in Q) is to first notice
that it has no rational roots and then to suppose it is the product of two degree-2 polynomials
with rational coefficients, i.e, that there exist a, b, ¢, d € @ such that

X' 4+1=(X?*+aX +b)(X*+cX +d) (1)

and get a contraddiction by comparing coefficients.

In order to exclude this second possibility, we notice that a decomposition (1) would be a
decomposition in C[X] as well. Denoting by 2, .. ., 24 the four roots of X* + 1 in C, the
decomposition

X' 4 1= (X —2)(X — 2)(X — 23)(X — 24)

holds as well, so that, since C[X ] is a UFD, we must have (X — z;)(X — z;) = X*+aX +b
for some distinct 7 and j. Hence

X2+QX+b=X2—(Zi+Zj)X—|—ZiZj Eae Zi+2jaziZjEQ (2)
It is easy to compute that
2
%(1 + i)} .

{2172272:37 Z4} = {i

We see that z; + z; = 0 if z; and z; are opposites, while otherwise z; + z; € {i\/ﬁ, iﬁz}

Hence z; + z; € Q implies that z; = —z;. But then
1 o 1 2 ,
Zizj = —5(1i2) =—§(1iz) = —(+7) ¢ Q.

This contradicts (2), so that X* + 1 is irreducible in Q[ X].

Now we move to IF,[ X ]. If p = 2, the polynomial X* + 1 factors as X* +1 = (X + 1)*. So
from now on we suppose that p > 3.

Suppose that —1 is a square in I, that is, there exists £ € IF,, such that £ = —1. Then
X' +1=(X*-9(X*+¢)

so that the given polynomial is reducible and we are left to consider the case in which p > 3
and —1 is not a square.

We denote by ]F;2 the subgroup of I consisting of squares. It is the image of the group
homomorphism ¢ : FX — FX sending z — x°. Since ker(f) = {£1}, by the First



Isomorphism Theorem we see that [ : Fx*] = 2. By assumption, —1 ¢ X so that
FX = Fx* 1 (—1)F;* We look for a decomposition of the form

X'+ 1=(X?+aX +b)(X?*—aX +b), a,be T,

This works if and only if 2b — a? = 0 and b*> = 1. Clearly this implies that a, b € F*. More
precisely, we obtain b = £1 and we need to find a € I such that a? = 2b. This works
because of the partition I} = IF;2 L (—1)IF;2, which tells us that either 2 or —2 is a square,
so that we can choose a to be the square root of one of the two and b € {£1} accordingly.

For the polynomial X* + 2X3 + X2 + 2X + 1 € Q[X] determine the Galois group of its
splitting field over Q.

Solution: The polynomial f = X* + 2X3 + X2 + 2X + 1 € Q[X] has no root in Z, since a
root would divide the constant term 1, and f(£1) # 0 because it is an odd integer. Hence it
also has no root in Q.

If z € Cis aroot of f, thensois z~'. For z # +1, we know that ! # z, but f(£1) # 0.
Hence the roots of f in C are given by a;,a; ", as, a;* for some eventually equal a;, a; € C.
Since (X — a;)(X —a;') = X? — (a; + a;')X + 1 for j = 1,2, we can define o; :=
—(a; + a; ') which lets us write down the decomposition

X 42X+ X2 42X +1=f= (X2 + X + 1)(X? + apX +1).

Comparing the coefficients in this equality we obtain the system of equations

a1+ oy =2
arap +2=1

Hence «; and o, are the two roots of the equation (in ) a? — 2o — 1 = 0, that is,
v =1+v/1+1=1++2

This gives us the only decomposition of f into monic polynomials. The roots of f are the
roots of the two equations 22 + (1 + /2)z + 1 = 0, that is the roots of f are given by

{%(_1 2+ m),%(q + ﬁii@)}.

Hence f can not be written as a product of polynomials of degree 2 and is irreducible over
Q.
Denote by

a = %(—1—\/§+«/—1+2\@)
ay = %(—1+\/§+z’\/1+2\@).

Hence [Q(a1) : Q] = 4 and we have that [Q(ay, a2) : Q(a;)] = 2, since ay is a root of
2?2+ (1 —+/2)z +1and 1 — /2 € Q(a1). Thus | Gal(E : Q)| = 8, where E is the splitting
field of f over Q.



This means that Gal(£/Q), seen as a subgroup of Sy, is precisely the subgroup W5 of per-
mutations respecting the partition {1, 2, 3,4} = {1,3} u {2,4}. This is given by

Wy = {id, (13)(24),(12)(34),(14)(23),(1234),(1432),(13),(24)},

which by numbering the vertices of a square counterclockwise from 1 to 4 can be seen to be
isomorphic to Dy, the dihedral group on 4 elements.

Let p > 2 be a prime number and ( := e Let B = Q(¢). Recall that Gal(E : Q) =~
(Z/pZ)".

(a) Show that there exists a unique subgroup H of Gal(Q((¢) : Q) of order 2. What is its
generator? [Hint: It is an element of order 2]

(b) Provethat Q(¢ +¢~') < E¥ and that [E: Q(¢ + (1] < 2.

(c) Deduce that E¥ = Q(¢ + ¢1).

Solution: An isomorphism (Z/pZ)* = Gal(Q(¢) : Q) is given by k + pZ — (¢ — ¢*) for
each k € Z. Recall that an automorphism of Q({) (fixing Q) is indeed uniquely determined
by the image of ¢, which in turn needs to be another root of =1 = XP~1 4+ XP~2 4 ... 4
X+ 1.

(a) By Algebra I, we know that (Z/pZ)* is cyclic of order p — 1 because Z/pZ is a
finite field. And p — 1 is divisible by 2 since p is odd. Hence Gal(Q(¢) : Q) has
a unique subgroup of order 2. It is generated by the %—th power of a generator of
Gal(Q(¢) : Q). Only one element Gal(Q(¢) : Q) can have order 2, because two distinct
such elements generate distinct subgroups of order 2.

We also know that complex conjugation o : x — 7T belongs to Gal(Q(¢) : Q) which
clearly has order 2, so that H = (o).

(b) As || = 1, we see that ("' = (, so that ¢ actually corresponds to the class of —1 €
(Z/pZ)*.
We have
o(C+¢ ) =) +a()=¢"+,

sothat ( + (' e EH. As E* is a subfield of F, we can conclude that Q(( + (') < E.
Notice that ¢ isarootof (X —()(X — (') = X2 = ((+ ¢ HX +1eQ(¢C+¢H[X],
sothat [F: Q(¢ + ¢ <2

(c) By the Galois correspondence [E : E¥| = |H| = 2. Hence we know that
2-[E":QC+ D] = [E:Q(C+ (TN <2
so that [F : Q(¢ + ¢71)] = 1, meaning that T = Q(¢ + ¢71).

Let £ : k be a finite Galois extension with Galois group G = Gal(E : k) of degree n = [E :
k]. Define the trace T : E — FE by



(a) Prove thatim(7")  k and that 7" is k-linear.
(b) Show that T is not identically zero and deduce that dim(ker(7")) = n — 1.

(c) Now suppose that Gal(E : k) is cyclic and generated by an automorphism o. Consider
the linear map 7 = o — idg. Prove that

ker(T) = im(7) = {o(u) —u : ue E}.
Solution:

(a) Let7e G.Foreachz e E,

m(T(z)) =1 (Z 0(x)> = Y 7o(z) = T(x),

oeG oeG
because o — 70 is a bijection G — (. By arbitrarity of 7 and x € F, the image of T'
is in £, which coincides with k because E : k is Galois.
In order to prove that 7' is k-linear, let x,y € E and a € k. Then

T(x+ay) = Z o(z+ay) = Z(U(aj) +ao(y)) =T(z) + aT(y).
oeG oeG

(b) The map 7" € Hom(E*, E) is a non-trivial linear combination of the finitely elements
o€ Gal(F : k) = Auty(E™). Hence T' # 0. Then the image of 7" is a non-zero k-linear
subspace of k, since we have seen in the Single Choice 10 Exercise 2b) that im(7") = k,
so that dim(im(7")) = 1. Then by the First Isomorphism theorem we conclude

dim(ker(7)) = n — dim(im(7)) = n — 1.

(c) We notice that ker(7) = {u € E : o(u) = u} = EY = k, because o generates &
so that the elements of F fixed by o are fixed by the whole GG. Again from the First
Isomorphism theorem, we obtain

dim(im(7)) = n — dim(ker(7)) = n — 1.

As ker(7T) and im(7) have the same dimension, it suffices to show that one is contained
in the other. We show that im(7) < ker(7'): forall z € F,

T(o(x)—z) = Z o(o(z) —x) = Z o'o(z) — 2 o'(x) =T(x) —T(x) = 0.

o'eG o'eG o'eG

5. Let p be an odd prime number. Let { = e eCand E = Q(¢)- Recall that Gal(E : Q) =~
7. For a € F 7, define the Legendre symbol

a) |1 ifaisasquareinF;
p) | —1 ifaisanotsquareinF).

Define the complex number



(a) Show that the map F — {£1} sending a — <%) is a group homomorphism.
(b) Prove that

(£) = )

and that this determines ( %) € {£1} uniquely.

(c) Show that (%) —lifandonlyifp=1 (mod 4).
(d) Forbe F), leto, € Gal(E : Q) be the automorphism 0,(¢) = ¢”. Prove the equality

op(T) = <%> T

(e) Prove that Q(7) : Q is the unique quadratic intermediate extension of F : Q.

We now want to determine the extension Q(7) by computing 72 explicitly.

(f) LetceF). Show that

2 Ca(lJrc) _ -1 if ¢ 7"ép_ 1
p—1 ifec=p—1
ae]F;<

(g) Write
b
22 Z Z <a_> il
acFy beFy p

Substituting b = ac with c € IF;, deduce that

2o (E) (5 e

(h) Conclude: if p =1 (mod 4), then Q(7) = Q(\/p): if p =3 (mod 4), then Q(7) =
Q(iyp).

Solution:

(a) The group 7 is cyclic of even order p — 1. Since it is abelian, the map s : F — F}
sending x — 2 is a group homomorphism. The set of squares in [F) is given by

S ={s(z), zeF;} =im(s).

By the First Isomorphism theorem, s induces an isomorphism F)/ ker(s) — S. Mo-
reover ker(s) = {z € F} : 2* = 1} = {+£1} because it contains the roots of the
degree-2 polynomial X? — 1 € F,[X]. Hence S is a subgroup of order 2 of F, imp-
lying that for a,b € F; the element ab € F; is a square if and only if a and b are both

square or both are not squares. In particular, the given map is a group homomorphism.
(b) The group F) is the set of roots of X?~! — 1 € F,[X]. Since X~ — 1 (X% —
p—1 P

1)(X"2 + 1), we know that precisely 25" elements in a € F) satisfy "z = 1, the

|
-

others satisfying "z = —1.Ifa = b for b € F, then o’z = "3 = 1. Since by
part (a) there are precisely 7%1 squares in F ¥, we conclude that a5 =—1le F, when

p—1

a is not a square. Hence a = = (%) (mod p) foreach a € F.
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(©)

(d)

(e)

(®)

€9

By part (b),

which is 1 if and only if p — 1 is divisible by 4, that is, if and only if p = 1 (mod 4).

The power ¢* for a € [F, is well defined, because (P™ = 1 for each m € Z. Clearly,
7 € E by definition. For each b € IF;, we compute

i-0(50))- 5 Goer- 30 O

aeFy acFy acFy
b b b
() (F)e-0)-
p * \ P p
aclFy,

in the last step having used the fact that {ba : a € F’} = F) for each b € ¥, which
holds because F is a group.

2
By part (d), we see that o,(72?) = (g) 2 = 72 for each b € TF,, so that 72 €

EGAEQ) — Q. Moreover, 0y(7) # 7 when b is not a square in F (which is the
case for half of the elements of IF), so that 7 ¢ Q. Hence Q(7) : Q is a quadratic
extension.

On the other hand, the Galois group Gal(E : Q) = [F’ is cyclic of even order p — 1,
so it contains precisely one subgroup of index 2 (that is, of order 7%1). Hence, there is
precisely one quadratic extension L : Q contained in E (that is, such that [E : L] =
_1), which is then given by Q(7).

Forc =p—1, we get
2T = D= () = Yl =p -t
aeIF';f aeF; ae]F;< aeIF‘;)<

Else, 1 + ce F, so that {a(l1+¢):ac IF;} =IF and

Z Ca(l-‘rc): Z Ca:_1+ Z Ca:_L

acFy acFy agfp

because ( is a root of 37—} X = At [X].

Since {ac : ce F} = F, we can perform the suggested substitution, as follows:

T‘ZZ(ab> ath _ ZZ( >a+ac_22( ) a(l+e)

acF,; beF, acFy ceFy acF, ceFp
p—2
_ 2 Z ( ) a(l+e) _ 2 ( ) Z C (1+¢) 2 (_1) (p _ 1) . Z (E)
acFy ceFy ceFy acF, c=1 p



(h) The above sum reads

@0 G506

X
celF,

because <§> attains the values 1 and —1 an equal number of times for c € F .

Ifp=1 (mod 4), then

7—2 =D,
so that 7 = +,/p and Q(7) = Q(,/p) is a quadratic real extension of Q.
Else,p =3 (mod 4),

2 _
T = —D,

so that 7 = +4,/p and Q(7) = Q(i,/p) is a quadratic imaginary extension of Q.

6. Let L : K be a finite Galois extension with Galois group G. Let G’ denote the commutator
subgroup [G, G] generated by all commutators zyz~'y~! in G. Show that L% : K is a
Galois extension with Gal(L%" : K) abelian. Show that any Galois extension £ : K with
E < L and Gal(E : K) abelian is contained in L&

Solution: We know that GG’ is a normal subgroup of GG because

2o, yle = lewe ™ 2y,
so by the Galois correspondence, the extension L : K is indeed a Galois extension. Its
Galois group is G/G’, which is abelian.

If L: F: K issuchthat £ : K is Galois with abelian Galois group, then the subgroup H =
Gal(L : E) is normal with G/H abelian. It follows that H > G’ (because any commutator
maps to 1 in G/H), and therefore by the Galois correspondance that £ — L%

7. For all ideals a, b, ¢ and all elements z, y of a ring R show the formulas

@ (2)(y) = (zy)
(b) a(bc) = (ab)c

© (z)-((y)-a)=(ry) a

Solution:

(@) Letr e (z)(y). Thenr = Y | x;y; with z; € () and y; € (y). Write z; = q;x and
y; = byy for a;, b; € R. Then we have

n

ro= Z(aﬂ) (biy) = Z(aibi)'xy = (Zaibi) xy € (ry).

=1

This proves the inclusion —. For the reverse inclusion we write any r € (xy) in the
form r = axy = ax - y for some a € R. This directly shows that r € (z)(y), proving
the inclusion o.



(b) Letx € a(bc). Then x = )" | a;d; where a; € a and d; € be. Similarly each d; =
252y bijcij with b; j € b and ¢; ; € c. Hence we have

n n mg n. o m;
o= > ad = ) a (2 bz’,jcz',j> = > D (@bis)ei.
i=1 i=1  \j=1 i=1j=1

Now (a;b; j)c;; € (ab)c for each 7. Since ideals are closed under addition, we see that
x € (ab)c. We have thus shown the inclusion*“c”. The argument for “>” is analogous.

(c) Using first (b) and then (a) shows that (x) - ((y) - a) = ((x) - (y)) -a = (xy) - a.

Decide which of the following ideals of Q[ X, Y, Z] are equal:

I == (X,Y) Iy = (XZ,X-Y,X+Y)

L = (X,Y,2) Is = (X2+Y2Z-Y? 27— X?
I3 == (X2%Y?22) I == (XZ,Y?—5X% X*— XZ)
I = (XZ,X%Y?)

Solution: For each monomial M, the ideal (M) consists of those polynomials in which
only those monomials occur that are divisible by M. For any monomials My, ..., M,,
(M, ..., M,) therefore consists of those polynomials in which only those monomials occur
that are divisible by at least one of the M;. Thus Z lies in the ideals /5 and I3, but not in [;
or I,. Furthermore, Y lies in the ideals /; and I, but not in I3 or I,. Therefore, the ideals [;
to I, are all different.

Then I5 contains the two elements
(X+Y)+(X-Y)) = X and
-((X~|—Y)—(X—Y)) =Y

NI N

Conversely, since X + Y are linear combinations of these elements, this ideal is equal to
(XZ,X,Y). Here, X7 is already a multiple of X; we can therefore omit this generating
end. Therefore, I5 = (X,Y) = I;.

We calculate analogously
L((XP+Y)+(Z-Y*)+(Z—-X?) = Z and

Z—(Z-X? = X* and

Z—(Z-Y?* =Y~
Conversely, X2 + Y2, Z — Y2, Z — X? are already linear combinations of Z, X2, Y'2; thus
the ideal /4 is equal to /3.
Finally, we calculate

XZ+(X*-XZ) = X* and
(V> —5X*) +5.-X* = Y2

Conversely, Y2 — 5X? and X? — X Z are already linear combinations of X Z, X2, Y?; thus
the ideal I; is equal to 1.



9. Forw = e’5 consider the ring R := Z|w] < C with the field norm
N: R — Z=g, a+ bw— a* — ab + b°.

(a) Show that the field norm N is multiplicative.

(b) Prove that ? is a Euclidean ring with respect to V.

(c) Determine the group of units R*. [Hint: Use part (b).]
(d) Write 5 + w as a product of prime elements from R.

(e) Prove that each prime element of R divides exactly one prime number p € Z.

Solution:

(a) The field norm N satisfies N(1) = 1 and is multiplicative: for all a = r + sw,b =
u+ vw € R, withr, s, u, v € Z, we have

N(ab) = N((r + sw)(u + vw))

N(ru+ (rv + su)w + svw?)

= N((ru — sv) + (rv + su — sv)w)

= (ru — sv)* — (ru — sv)(rv + su — sv) + (rv + su — sv)
= (r* —rs + 8% (u* — uv + v?)

= N(a)N(b).

2

—~

(b) Let z,y € R with y # 0. We can write § = a + bw with a, b € Q. Choose m, n € Z such

that
1

2
and let ¢ := m + nw and r := x — yq. From our construction we obtain:

N(g_q> _(a—m)—(a—m)(b—n)+ (b—n)? < <%>2+ (%)2+ (%)2@.

Then we have x = yq + r with

1
|a—m|<§ and |b—n| <

N@%=N@—ym=wwwN(§—§)<N@»

Thus R is a Euclidean ring for the function V.

(c) If s € R* is a unit, then also s~ € R*. Hence
N(s)-N(s7') = N(ssh) = N(1) = 1.

On the other hand, to determine all the elements s € R with N(s) = 1, we can use the
quadratic formula for the equation 2 — ry + y? — 1 = 0 to obtain

y:%@_vz_%a

1
y = 5(\/4 — 322 + ).



Considering possible integer solutions for the equations above, we obtain that +1, +w are
the only elements s € R with N(s) = 1. Hence

sER* « N(s)=1 < se{*l, tw,£(1 +w)}.

(d) Since N(5w + 1) = 21, we can write 5w + 1 as a product of at most two elements
s,r € R\R* of norm 3 and 7. Since N is multiplicative, we have that r and s have to be
irreducible. By trying out, we find that the element N(1 — w) = 3 and N(3 + w) = 7, and
that there is a decomposition

Sw+1=(1-w)(B3+w): w,

where w € R* by part (c). The ring R is Euclidean, so it is also factorial, which means that
irreducible elements are prime and the decomposition above is a product of prime elements.
(e) Let a = r + sw € R be prime. Since a is not a unit, we have N(a) > 1 since N(a) =
r?+s?—rs = $(r?4+s*—2rs)+3(r*+s?) = 0, so that N (a) has a non-trivial decomposition
into prime numbers N (a) = p; - - - p. Note that N(a) = N(r + sw)N(r + sw?) = a - @, so
that a divides at least one prime number p;, since a is prime.

Let us assume that a divides two different prime numbers p and ¢q. Then we have that 1 is a
Z.-linear combination of p and ¢ and hence also a R-linear combination. Hence a divides the
elements 1 € R, which is a contradiction.
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