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Prof. Dr. Özlem Imamoglu

Solutions Review exercise sheet

1. Show that X4 ` 1 P QrXs is irreducible. Show that X4 ` 1 is reducible in FprXs for every
prime p.

Solution: The standard approach to prove that X4 ` 1 is irreducible in Q is to first notice
that it has no rational roots and then to suppose it is the product of two degree-2 polynomials
with rational coefficients, i.e, that there exist a, b, c, d P Q such that

X4
` 1 “ pX2

` aX ` bqpX2
` cX ` dq (1)

and get a contraddiction by comparing coefficients.

In order to exclude this second possibility, we notice that a decomposition (1) would be a
decomposition in CrXs as well. Denoting by z1, . . . , z4 the four roots of X4 ` 1 in C, the
decomposition

X4
` 1 “ pX ´ z1qpX ´ z2qpX ´ z3qpX ´ z4q

holds as well, so that, since CrXs is a UFD, we must have pX ´ ziqpX ´ zjq “ X2 `aX ` b
for some distinct i and j. Hence

X2
` aX ` b “ X2

´ pzi ` zjqX ` zizj ùñ zi ` zj, zizj P Q (2)

It is easy to compute that

tz1, z2, z3, z4u “

"

˘

?
2

2
p1 ˘ iq

*

.

We see that zi ` zj “ 0 if zi and zj are opposites, while otherwise zi ` zj P t˘
?
2,˘

?
2iu.

Hence zi ` zj P Q implies that zi “ ´zj . But then

zizj “ ´
1

2
p1 ˘ iq2 “ ´

1

2
p1 ˘ iq2 “ ´p˘iq R Q.

This contradicts (2), so that X4 ` 1 is irreducible in QrXs.

Now we move to FprXs. If p “ 2, the polynomial X4 ` 1 factors as X4 ` 1 “ pX ` 1q4. So
from now on we suppose that p ě 3.

Suppose that ´1 is a square in Fp, that is, there exists ξ P Fp such that ξ2 “ ´1. Then

X4
` 1 “ pX2

´ ξqpX2
` ξq

so that the given polynomial is reducible and we are left to consider the case in which p ě 3
and ´1 is not a square.

We denote by Fˆ2
p the subgroup of Fˆ

p consisting of squares. It is the image of the group
homomorphism θ : Fˆ

p Ñ Fˆ
p sending x ÞÑ x2. Since kerpθq “ t˘1u, by the First
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Isomorphism Theorem we see that rFˆ
p : Fˆ2

p s “ 2. By assumption, ´1 R Fˆ2
p so that

Fˆ
p “ Fˆ2

p \ p´1qFˆ2
p . We look for a decomposition of the form

X4
` 1 “ pX2

` aX ` bqpX2
´ aX ` bq, a, b P Fp.

This works if and only if 2b ´ a2 “ 0 and b2 “ 1. Clearly this implies that a, b P Fˆ. More
precisely, we obtain b “ ˘1 and we need to find a P Fˆ

p such that a2 “ 2b. This works
because of the partition Fˆ

p “ Fˆ2
p \ p´1qFˆ2

p , which tells us that either 2 or ´2 is a square,
so that we can choose a to be the square root of one of the two and b P t˘1u accordingly.

2. For the polynomial X4 ` 2X3 ` X2 ` 2X ` 1 P QrXs determine the Galois group of its
splitting field over Q.

Solution: The polynomial f “ X4 ` 2X3 ` X2 ` 2X ` 1 P QrXs has no root in Z, since a
root would divide the constant term 1, and fp˘1q ‰ 0 because it is an odd integer. Hence it
also has no root in Q.

If x P C is a root of f , then so is x´1. For x ‰ ˘1, we know that x´1 ‰ x, but fp˘1q ‰ 0.
Hence the roots of f in C are given by a1, a

´1
1 , a2, a

´1
2 for some eventually equal a1, a2 P C.

Since pX ´ ajqpX ´ a´1
j q “ X2 ´ paj ` a´1

j qX ` 1 for j “ 1, 2, we can define αj :“

´paj ` a´1
j q which lets us write down the decomposition

X4
` 2X3

` X2
` 2X ` 1 “ f “ pX2

` α1X ` 1qpX2
` α2X ` 1q.

Comparing the coefficients in this equality we obtain the system of equations
"

α1 ` α2 “ 2
α1α2 ` 2 “ 1

Hence α1 and α2 are the two roots of the equation (in α) α2 ´ 2α ´ 1 “ 0, that is,

α1,2 “ 1 ˘
?
1 ` 1 “ 1 ˘

?
2.

This gives us the only decomposition of f into monic polynomials. The roots of f are the
roots of the two equations x2 ` p1 ˘

?
2qx ` 1 “ 0, that is the roots of f are given by

"

1

2
p´1 ´

?
2 ˘

b

´1 ` 2
?
2q,

1

2
p´1 `

?
2 ˘ i

b

1 ` 2
?
2q

*

.

Hence f can not be written as a product of polynomials of degree 2 and is irreducible over
Q.

Denote by

a1 “
1

2
p´1 ´

?
2 `

b

´1 ` 2
?
2q

a2 “
1

2
p´1 `

?
2 ` i

b

1 ` 2
?
2q.

Hence rQpa1q : Qs “ 4 and we have that rQpa1, a2q : Qpa1qs “ 2, since a2 is a root of
x2 ` p1 ´

?
2qx ` 1 and 1 ´

?
2 P Qpa1q. Thus |GalpE : Qq| “ 8, where E is the splitting

field of f over Q.
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This means that GalpE{Qq, seen as a subgroup of S4, is precisely the subgroup W2 of per-
mutations respecting the partition t1, 2, 3, 4u “ t1, 3u Y t2, 4u. This is given by

W2 “ tid, p1 3qp2 4q, p1 2qp3 4q, p1 4qp2 3q, p1 2 3 4q, p1 4 3 2q, p1 3q, p2 4qu,

which by numbering the vertices of a square counterclockwise from 1 to 4 can be seen to be
isomorphic to D4, the dihedral group on 4 elements.

3. Let p ą 2 be a prime number and ζ :“ e
2πi
p . Let E “ Qpζq. Recall that GalpE : Qq –

pZ{pZqˆ.

(a) Show that there exists a unique subgroup H of GalpQpζq : Qq of order 2. What is its
generator? [Hint: It is an element of order 2]

(b) Prove that Qpζ ` ζ´1q Ď EH and that rE : Qpζ ` ζ´1qs ď 2.

(c) Deduce that EH “ Qpζ ` ζ´1q.

Solution: An isomorphism pZ{pZqˆ „
Ñ GalpQpζq : Qq is given by k ` pZ ÞÑ pζ ÞÑ ζkq for

each k P Z. Recall that an automorphism of Qpζq (fixing Q) is indeed uniquely determined
by the image of ζ , which in turn needs to be another root of Xp´1

X´1
“ Xp´1 ` Xp´2 ` ¨ ¨ ¨ `

X ` 1.

(a) By Algebra I, we know that pZ{pZqˆ is cyclic of order p ´ 1 because Z{pZ is a
finite field. And p ´ 1 is divisible by 2 since p is odd. Hence GalpQpζq : Qq has
a unique subgroup of order 2. It is generated by the p´1

2
-th power of a generator of

GalpQpζq : Qq. Only one element GalpQpζq : Qq can have order 2, because two distinct
such elements generate distinct subgroups of order 2.
We also know that complex conjugation σ : x ÞÑ x belongs to GalpQpζq : Qq which
clearly has order 2, so that H “ xσy.

(b) As |ζ| “ 1, we see that ζ´1 “ ζ , so that σ actually corresponds to the class of ´1 P

pZ{pZqˆ.
We have

σpζ ` ζ´1
q “ σpζq ` σpζ´1

q “ ζ´1
` ζ,

so that ζ ` ζ´1 P EH . As EH is a subfield of E, we can conclude thatQpζ ` ζ´1q Ă E.
Notice that ζ is a root of pX ´ ζqpX ´ ζ´1q “ X2 ´ pζ ` ζ´1qX ` 1 P Qpζ ` ζ´1qrXs,
so that rE : Qpζ ` ζ´1s ď 2.

(c) By the Galois correspondence rE : EHs “ |H| “ 2. Hence we know that

2 ¨ rEH : Qpζ ` ζ´1
qs “ rE : Qpζ ` ζ´1

qs ď 2

so that rEH : Qpζ ` ζ´1qs “ 1, meaning that EH “ Qpζ ` ζ´1q.

4. Let E : k be a finite Galois extension with Galois group G “ GalpE : kq of degree n “ rE :
ks. Define the trace T : E ÝÑ E by

T pxq “
ÿ

σPG

σpxq.
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(a) Prove that impT q Ď k and that T is k-linear.

(b) Show that T is not identically zero and deduce that dimpkerpT qq “ n ´ 1.

(c) Now suppose that GalpE : kq is cyclic and generated by an automorphism σ. Consider
the linear map τ “ σ ´ idE . Prove that

kerpT q “ impτq “ tσpuq ´ u : u P Eu.

Solution:

(a) Let τ P G. For each x P E,

τpT pxqq “ τ

˜

ÿ

σPG

σpxq

¸

“
ÿ

σPG

τσpxq “ T pxq,

because σ ÞÑ τσ is a bijection G ÝÑ G. By arbitrarity of τ and x P E, the image of T
is in EG, which coincides with k because E : k is Galois.
In order to prove that T is k-linear, let x, y P E and a P k. Then

T px ` ayq “
ÿ

σPG

σpx ` ayq “
ÿ

σPG

pσpxq ` aσpyqq “ T pxq ` aT pyq.

(b) The map T P HompEˆ, Eq is a non-trivial linear combination of the finitely elements
σ P GalpE : kq “ AutkpEˆq. Hence T ‰ 0. Then the image of T is a non-zero k-linear
subspace of k, since we have seen in the Single Choice 10 Exercise 2b) that impT q “ k,
so that dimpimpT qq “ 1. Then by the First Isomorphism theorem we conclude

dimpkerpT qq “ n ´ dimpimpT qq “ n ´ 1.

(c) We notice that kerpτq “ tu P E : σpuq “ uu “ EG “ k, because σ generates G
so that the elements of E fixed by σ are fixed by the whole G. Again from the First
Isomorphism theorem, we obtain

dimpimpτqq “ n ´ dimpkerpτqq “ n ´ 1.

As kerpT q and impτq have the same dimension, it suffices to show that one is contained
in the other. We show that impτq Ă kerpT q: for all x P E,

T pσpxq ´ xq “
ÿ

σ1PG

σ1
pσpxq ´ xq “

ÿ

σ1PG

σ1σpxq ´
ÿ

σ1PG

σ1
pxq “ T pxq ´ T pxq “ 0.

5. Let p be an odd prime number. Let ζ “ e
2πi
p P C and E “ Qpζq. Recall that GalpE : Qq –

Fˆ
p . For a P Fˆ

p , define the Legendre symbol
ˆ

a

p

˙

“

"

1 if a is a square in Fˆ
p

´1 if a is a not square in Fˆ
p .

Define the complex number

τ “
ÿ

aPFˆ
p

ˆ

a

p

˙

ζa.
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(a) Show that the map Fˆ
p Ñ t˘1u sending a ÞÑ

´

a
p

¯

is a group homomorphism.

(b) Prove that
ˆ

a

p

˙

” a
p´1
2 pmod pq,

and that this determines
´

a
p

¯

P t˘1u uniquely.

(c) Show that
´

´1
p

¯

“ 1 if and only if p ” 1 pmod 4q.

(d) For b P Fˆ
p , let σb P GalpE : Qq be the automorphism σbpζq “ ζb. Prove the equality

σbpτq “

´

b
p

¯

¨ τ .

(e) Prove that Qpτq : Q is the unique quadratic intermediate extension of E : Q.

We now want to determine the extension Qpτq by computing τ 2 explicitly.

(f) Let c P Fˆ
p . Show that

ÿ

aPFˆ
p

ζap1`cq
“

"

´1 if c ‰ p ´ 1
p ´ 1 if c “ p ´ 1

(g) Write

τ 2 “
ÿ

aPFˆ
p

ÿ

bPFˆ
p

ˆ

ab

p

˙

ζa`b.

Substituting b “ ac with c P Fˆ
p , deduce that

τ 2 “ ´

p´2
ÿ

c“1

ˆ

c

p

˙

`

ˆ

´1

p

˙

pp ´ 1q.

(h) Conclude: if p ” 1 pmod 4q, then Qpτq “ Qp
?
pq; if p ” 3 pmod 4q, then Qpτq “

Qpi
?
pq.

Solution:

(a) The group Fˆ
p is cyclic of even order p ´ 1. Since it is abelian, the map s : Fˆ

p ÝÑ Fˆ
p

sending x ÞÑ x2 is a group homomorphism. The set of squares in Fˆ
p is given by

S “ tspxq, x P Fˆ
p u “ impsq.

By the First Isomorphism theorem, s induces an isomorphism Fˆ
p { kerpsq

„
ÝÑ S. Mo-

reover kerpsq “ tx P Fˆ
p : x2 “ 1u “ t˘1u because it contains the roots of the

degree-2 polynomial X2 ´ 1 P FprXs. Hence S is a subgroup of order 2 of Fˆ
p , imp-

lying that for a, b P Fˆ
p the element ab P Fˆ

p is a square if and only if a and b are both
square or both are not squares. In particular, the given map is a group homomorphism.

(b) The group Fˆ
p is the set of roots of Xp´1 ´ 1 P FprXs. Since Xp´1 ´ 1 “ pX

p´1
2 ´

1qpX
p´1
2 ` 1q, we know that precisely p´1

2
elements in a P Fˆ

p satisfy a
p´1
2 “ 1, the

others satisfying a
p´1
2 “ ´1. If a “ b2 for b P Fˆ

p , then a
p´1
2 “ b2¨

p´1
2 “ 1. Since by

part (a) there are precisely p´1
2

squares in Fˆ
p , we conclude that a

p´1
2 “ ´1 P Fp when

a is not a square. Hence a
p´1
2 ”

´

a
p

¯

(mod p) for each a P Fˆ
p .
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(c) By part (b),
ˆ

´1

p

˙

“ p´1q
p´1
2 ,

which is 1 if and only if p ´ 1 is divisible by 4, that is, if and only if p ” 1 (mod 4).

(d) The power ζa for a P Fp is well defined, because ζpm “ 1 for each m P Z. Clearly,
τ P E by definition. For each b P Fˆ

p , we compute

σbpτq “ σb

¨

˝

ÿ

aPFˆ
p

ˆ

a

p

˙

ζa

˛

‚“
ÿ

aPFˆ
p

ˆ

a

p

˙

σbpζq
a

“
ÿ

aPFˆ
p

ˆ

b

p

˙ ˆ

b

p

˙ ˆ

a

p

˙

ζba

“

ˆ

b

p

˙

ÿ

aPFˆ
p

ˆ

ba

p

˙

ζba “

ˆ

b

p

˙

τ,

in the last step having used the fact that tba : a P Fˆ
p u “ Fˆ

p for each b P Fˆ
p , which

holds because Fˆ
p is a group.

(e) By part (d), we see that σbpτ
2q “

´

b
p

¯2

τ 2 “ τ 2 for each b P Fp, so that τ 2 P

EGalpE:Qq “ Q. Moreover, σbpτq ‰ τ when b is not a square in Fˆ
p (which is the

case for half of the elements of Fˆ
p ), so that τ R Q. Hence Qpτq : Q is a quadratic

extension.
On the other hand, the Galois group GalpE : Qq – Fˆ

p is cyclic of even order p ´ 1,
so it contains precisely one subgroup of index 2 (that is, of order p´1

2
). Hence, there is

precisely one quadratic extension L : Q contained in E (that is, such that rE : Ls “
p´1
2

), which is then given by Qpτq.

(f) For c “ p ´ 1, we get
ÿ

aPFˆ
p

ζap1`cq
“

ÿ

aPFˆ
p

ζap “
ÿ

aPFˆ
p

pζpq
a

“
ÿ

aPFˆ
p

1 “ p ´ 1.

Else, 1 ` c P Fˆ
p , so that tap1 ` cq : a P Fˆ

p u “ Fˆ
p and

ÿ

aPFˆ
p

ζap1`cq
“

ÿ

aPFˆ
p

ζa “ ´1 `
ÿ

aPFp

ζa “ ´1,

because ζ is a root of
řp´1

a“0X
a “ Xp´1

X´1
P ZrXs.

(g) Since tac : c P Fˆ
p u “ Fˆ

p , we can perform the suggested substitution, as follows:

τ 2 “
ÿ

aPFˆ
p

ÿ

bPFˆ
p

ˆ

ab

p

˙

ζa`b
“

ÿ

aPFˆ
p

ÿ

cPFˆ
p

ˆ

apacq

p

˙

ζa`ac
“

ÿ

aPFˆ
p

ÿ

cPFˆ
p

ˆ

a2c

p

˙

ζap1`cq

“
ÿ

aPFˆ
p

ÿ

cPFˆ
p

ˆ

c

p

˙

ζap1`cq
“

ÿ

cPFˆ
p

ˆ

c

p

˙

ÿ

aPFˆ
p

ζap1`cq (f)
“

ˆ

´1

p

˙

pp ´ 1q ´

p´2
ÿ

c“1

ˆ

c

p

˙
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(h) The above sum reads

τ 2 “

ˆ

´1

p

˙

p ´

ˆ

´1

p

˙

´

p´2
ÿ

c“1

ˆ

c

p

˙

“

ˆ

´1

p

˙

p ´
ÿ

cPFˆ
p

ˆ

c

p

˙

“

ˆ

´1

p

˙

p,

because
´

c
p

¯

attains the values 1 and ´1 an equal number of times for c P Fˆ
p .

If p ” 1 pmod 4q, then

τ 2 “ p,

so that τ “ ˘
?
p and Qpτq “ Qp

?
pq is a quadratic real extension of Q.

Else, p ” 3 pmod 4q,

τ 2 “ ´p,

so that τ “ ˘i
?
p and Qpτq “ Qpi

?
pq is a quadratic imaginary extension of Q.

6. Let L : K be a finite Galois extension with Galois group G. Let G1 denote the commutator
subgroup rG,Gs generated by all commutators xyx´1y´1 in G. Show that LG1

: K is a
Galois extension with GalpLG1

: Kq abelian. Show that any Galois extension E : K with
E Ă L and GalpE : Kq abelian is contained in LG1 .

Solution: We know that G1 is a normal subgroup of G because

zrx, ysz´1
“ rzxz´1, zyz´1

s,

so by the Galois correspondence, the extension LG1

: K is indeed a Galois extension. Its
Galois group is G{G1, which is abelian.

If L : E : K is such that E : K is Galois with abelian Galois group, then the subgroup H “

GalpL : Eq is normal with G{H abelian. It follows that H Ą G1 (because any commutator
maps to 1 in G{H), and therefore by the Galois correspondance that E Ă LG1 .

7. For all ideals a, b, c and all elements x, y of a ring R show the formulas

(a) pxqpyq “ pxyq

(b) apbcq “ pabqc

(c) pxq ¨ ppyq ¨ aq “ pxyq ¨ a

Solution:

(a) Let r P pxqpyq. Then r “
řn

i“1 xiyi with xi P pxq and yi P pyq. Write xi “ aix and
yi “ biy for ai, bi P R. Then we have

r “

n
ÿ

i“1

paixq ¨ pbiyq “

n
ÿ

i“1

paibiq ¨ xy “

ˆ n
ÿ

i“1

aibi

˙

¨ xy P pxyq.

This proves the inclusion Ă. For the reverse inclusion we write any r P pxyq in the
form r “ axy “ ax ¨ y for some a P R. This directly shows that r P pxqpyq, proving
the inclusion Ą.
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(b) Let x P apbcq. Then x “
řn

i“1 aidi where ai P a and di P bc. Similarly each di “
řmi

j“1 bi,jci,j with bi,j P b and ci,j P c. Hence we have

x “

n
ÿ

i“1

aidi “

n
ÿ

i“1

ai

ˆ mi
ÿ

j“1

bi,jci,j

˙

“

n
ÿ

i“1

mi
ÿ

j“1

paibi,jqci,j.

Now paibi,jqci,j P pabqc for each i. Since ideals are closed under addition, we see that
x P pabqc. We have thus shown the inclusion“Ă”. The argument for “Ą” is analogous.

(c) Using first (b) and then (a) shows that pxq ¨ ppyq ¨ aq “ ppxq ¨ pyqq ¨ a “ pxyq ¨ a.

8. Decide which of the following ideals of QrX, Y, Zs are equal:

I1 :“ pX, Y q I5 :“ pXZ,X ´ Y,X ` Y q

I2 :“ pX, Y, Zq I6 :“ pX2 ` Y 2, Z ´ Y 2, Z ´ X2q

I3 :“ pX2, Y 2, Zq I7 :“ pXZ, Y 2 ´ 5X2, X2 ´ XZq

I4 :“ pXZ,X2, Y 2q

Solution: For each monomial M , the ideal pMq consists of those polynomials in which
only those monomials occur that are divisible by M . For any monomials M1, . . . ,Mn,
pM1, . . . ,Mnq therefore consists of those polynomials in which only those monomials occur
that are divisible by at least one of the Mi. Thus Z lies in the ideals I2 and I3, but not in I1
or I4. Furthermore, Y lies in the ideals I1 and I2, but not in I3 or I4. Therefore, the ideals I1
to I4 are all different.

Then I5 contains the two elements

1
2

¨
`

pX ` Y q ` pX ´ Y q
˘

“ X and
1
2

¨
`

pX ` Y q ´ pX ´ Y q
˘

“ Y

Conversely, since X ˘ Y are linear combinations of these elements, this ideal is equal to
pXZ,X, Y q. Here, XZ is already a multiple of X; we can therefore omit this generating
end. Therefore, I5 “ pX, Y q “ I1.

We calculate analogously

1
2

¨
`

pX2
` Y 2

q ` pZ ´ Y 2
q ` pZ ´ X2

q
˘

“ Z and
Z ´ pZ ´ X2

q “ X2 and
Z ´ pZ ´ Y 2

q “ Y 2.

Conversely, X2 ` Y 2, Z ´ Y 2, Z ´ X2 are already linear combinations of Z,X2, Y 2; thus
the ideal I6 is equal to I3.

Finally, we calculate

XZ ` pX2
´ XZq “ X2 and

pY 2
´ 5X2

q ` 5 ¨ X2
“ Y 2.

Conversely, Y 2 ´ 5X2 and X2 ´ XZ are already linear combinations of XZ,X2, Y 2; thus
the ideal I7 is equal to I4.
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9. For ω “ e
2πi
3 consider the ring R :“ Zrωs Ă C with the field norm

N : R Ñ Zě0, a ` bω ÞÑ a2 ´ ab ` b2.

(a) Show that the field norm N is multiplicative.

(b) Prove that R is a Euclidean ring with respect to N .

(c) Determine the group of units Rˆ. [Hint: Use part (b).]

(d) Write 5 ` ω as a product of prime elements from R.

(e) Prove that each prime element of R divides exactly one prime number p P Z.

Solution:

(a) The field norm N satisfies Np1q “ 1 and is multiplicative: for all a “ r ` sω, b “

u ` vω P R, with r, s, u, v P Z, we have

Npabq “ Nppr ` sωqpu ` vωqq

“ Npru ` prv ` suqω ` svω2
q

“ Nppru ´ svq ` prv ` su ´ svqωq

“ pru ´ svq
2

´ pru ´ svqprv ` su ´ svq ` prv ` su ´ svq
2

“ pr2 ´ rs ` s2qpu2
´ uv ` v2q

“ NpaqNpbq.

(b) Let x, y P R with y ‰ 0. We can write x
y

“ a ` bω with a, b P Q. Choose m,n P Z such
that

|a ´ m| ď
1

2
and |b ´ n| ď

1

2

and let q :“ m ` nω and r :“ x ´ yq. From our construction we obtain:

N

ˆ

x

y
´ q

˙

“ pa ´ mq
2

´ pa ´ mqpb ´ nq ` pb ´ nq
2

ď

ˆ

1

2

˙2

`

ˆ

1

2

˙2

`

ˆ

1

2

˙2

ă 1.

Then we have x “ yq ` r with

Nprq “ Npx ´ yqq “ NpyqN

ˆ

x

y
´ q

˙

ă Npyq.

Thus R is a Euclidean ring for the function N .

(c) If s P Rˆ is a unit, then also s´1 P Rˆ. Hence

Npsq ¨ Nps´1
q “ Npss´1

q “ Np1q “ 1.

On the other hand, to determine all the elements s P R with Npsq “ 1, we can use the
quadratic formula for the equation x2 ´ xy ` y2 ´ 1 “ 0 to obtain

y “
1

2
px ´

?
4 ´ 3x2q

y “
1

2
p
?
4 ´ 3x2 ` xq.
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Considering possible integer solutions for the equations above, we obtain that ˘1,˘ω are
the only elements s P R with Npsq “ 1. Hence

s P Rˆ
ðñ Npsq “ 1 ðñ s P t˘1,˘ω,˘p1 ` ωqu.

(d) Since Np5ω ` 1q “ 21, we can write 5ω ` 1 as a product of at most two elements
s, r P RzRˆ of norm 3 and 7. Since N is multiplicative, we have that r and s have to be
irreducible. By trying out, we find that the element Np1 ´ ωq “ 3 and Np3 ` ωq “ 7, and
that there is a decomposition

5ω ` 1 “ p1 ´ ωqp3 ` ωq ¨ ω,

where ω P Rˆ by part (c). The ring R is Euclidean, so it is also factorial, which means that
irreducible elements are prime and the decomposition above is a product of prime elements.

(e) Let a “ r ` sω P R be prime. Since a is not a unit, we have Npaq ą 1 since Npaq “

r2`s2´rs “ 1
2
pr2`s2´2rsq` 1

2
pr2`s2q ě 0, so that Npaq has a non-trivial decomposition

into prime numbers Npaq “ p1 ¨ ¨ ¨ pk. Note that Npaq “ Npr ` sωqNpr ` sω2q “ a ¨ a, so
that a divides at least one prime number pi, since a is prime.

Let us assume that a divides two different prime numbers p and q. Then we have that 1 is a
Z-linear combination of p and q and hence also a R-linear combination. Hence a divides the
elements 1 P R, which is a contradiction.
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