Solutions Review exercise sheet

1. Show that $X^{4}+1 \in \mathbb{Q}[X]$ is irreducible. Show that $X^{4}+1$ is reducible in $\mathbb{F}_{p}[X]$ for every prime p.
Solution: The standard approach to prove that $X^{4}+1$ is irreducible in \mathbb{Q} is to first notice that it has no rational roots and then to suppose it is the product of two degree- 2 polynomials with rational coefficients, i.e, that there exist $a, b, c, d \in \mathbb{Q}$ such that

$$
\begin{equation*}
X^{4}+1=\left(X^{2}+a X+b\right)\left(X^{2}+c X+d\right) \tag{1}
\end{equation*}
$$

and get a contraddiction by comparing coefficients.
In order to exclude this second possibility, we notice that a decomposition (1) would be a decomposition in $\mathbb{C}[X]$ as well. Denoting by z_{1}, \ldots, z_{4} the four roots of $X^{4}+1$ in \mathbb{C}, the decomposition

$$
X^{4}+1=\left(X-z_{1}\right)\left(X-z_{2}\right)\left(X-z_{3}\right)\left(X-z_{4}\right)
$$

holds as well, so that, since $\mathbb{C}[X]$ is a UFD, we must have $\left(X-z_{i}\right)\left(X-z_{j}\right)=X^{2}+a X+b$ for some distinct i and j. Hence

$$
\begin{equation*}
X^{2}+a X+b=X^{2}-\left(z_{i}+z_{j}\right) X+z_{i} z_{j} \Longrightarrow z_{i}+z_{j}, z_{i} z_{j} \in \mathbb{Q} \tag{2}
\end{equation*}
$$

It is easy to compute that

$$
\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\}=\left\{ \pm \frac{\sqrt{2}}{2}(1 \pm i)\right\} .
$$

We see that $z_{i}+z_{j}=0$ if z_{i} and z_{j} are opposites, while otherwise $z_{i}+z_{j} \in\{ \pm \sqrt{2}, \pm \sqrt{2} i\}$. Hence $z_{i}+z_{j} \in \mathbb{Q}$ implies that $z_{i}=-z_{j}$. But then

$$
z_{i} z_{j}=-\frac{1}{2}(1 \pm i)^{2}=-\frac{1}{2}(1 \pm i)^{2}=-(\pm i) \notin \mathbb{Q}
$$

This contradicts (2), so that $X^{4}+1$ is irreducible in $\mathbb{Q}[X]$.
Now we move to $\mathbb{F}_{p}[X]$. If $p=2$, the polynomial $X^{4}+1$ factors as $X^{4}+1=(X+1)^{4}$. So from now on we suppose that $p \geqslant 3$.
Suppose that -1 is a square in \mathbb{F}_{p}, that is, there exists $\xi \in \mathbb{F}_{p}$ such that $\xi^{2}=-1$. Then

$$
X^{4}+1=\left(X^{2}-\xi\right)\left(X^{2}+\xi\right)
$$

so that the given polynomial is reducible and we are left to consider the case in which $p \geqslant 3$ and -1 is not a square.
We denote by $\mathbb{F}_{p}^{\times 2}$ the subgroup of \mathbb{F}_{p}^{\times}consisting of squares. It is the image of the group homomorphism $\theta: \mathbb{F}_{p}^{\times} \rightarrow \mathbb{F}_{p}^{\times}$sending $x \mapsto x^{2}$. Since $\operatorname{ker}(\theta)=\{ \pm 1\}$, by the First

Isomorphism Theorem we see that $\left[\mathbb{F}_{p}^{\times}: \mathbb{F}_{p}^{\times 2}\right]=2$. By assumption, $-1 \notin \mathbb{F}_{p}^{\times 2}$ so that $\mathbb{F}_{p}^{\times}=\mathbb{F}_{p}^{\times 2} \sqcup(-1) \mathbb{F}_{p}^{\times 2}$. We look for a decomposition of the form

$$
X^{4}+1=\left(X^{2}+a X+b\right)\left(X^{2}-a X+b\right), a, b \in \mathbb{F}_{p} .
$$

This works if and only if $2 b-a^{2}=0$ and $b^{2}=1$. Clearly this implies that $a, b \in \mathbb{F}^{\times}$. More precisely, we obtain $b= \pm 1$ and we need to find $a \in \mathbb{F}_{p}^{\times}$such that $a^{2}=2 b$. This works because of the partition $\mathbb{F}_{p}^{\times}=\mathbb{F}_{p}^{\times 2} \sqcup(-1) \mathbb{F}_{p}^{\times 2}$, which tells us that either 2 or -2 is a square, so that we can choose a to be the square root of one of the two and $b \in\{ \pm 1\}$ accordingly.
2. For the polynomial $X^{4}+2 X^{3}+X^{2}+2 X+1 \in \mathbb{Q}[X]$ determine the Galois group of its splitting field over \mathbb{Q}.
Solution: The polynomial $f=X^{4}+2 X^{3}+X^{2}+2 X+1 \in \mathbb{Q}[X]$ has no root in \mathbb{Z}, since a root would divide the constant term 1 , and $f(\pm 1) \neq 0$ because it is an odd integer. Hence it also has no root in Q .
If $x \in \mathbb{C}$ is a root of f, then so is x^{-1}. For $x \neq \pm 1$, we know that $x^{-1} \neq x$, but $f(\pm 1) \neq 0$. Hence the roots of f in \mathbb{C} are given by $a_{1}, a_{1}^{-1}, a_{2}, a_{2}^{-1}$ for some eventually equal $a_{1}, a_{2} \in \mathbb{C}$. Since $\left(X-a_{j}\right)\left(X-a_{j}^{-1}\right)=X^{2}-\left(a_{j}+a_{j}^{-1}\right) X+1$ for $j=1,2$, we can define $\alpha_{j}:=$ $-\left(a_{j}+a_{j}^{-1}\right)$ which lets us write down the decomposition

$$
X^{4}+2 X^{3}+X^{2}+2 X+1=f=\left(X^{2}+\alpha_{1} X+1\right)\left(X^{2}+\alpha_{2} X+1\right)
$$

Comparing the coefficients in this equality we obtain the system of equations

$$
\left\{\begin{array}{l}
\alpha_{1}+\alpha_{2}=2 \\
\alpha_{1} \alpha_{2}+2=1
\end{array}\right.
$$

Hence α_{1} and α_{2} are the two roots of the equation (in α) $\alpha^{2}-2 \alpha-1=0$, that is,

$$
\alpha_{1,2}=1 \pm \sqrt{1+1}=1 \pm \sqrt{2} .
$$

This gives us the only decomposition of f into monic polynomials. The roots of f are the roots of the two equations $x^{2}+(1 \pm \sqrt{2}) x+1=0$, that is the roots of f are given by

$$
\left\{\frac{1}{2}(-1-\sqrt{2} \pm \sqrt{-1+2 \sqrt{2}}), \frac{1}{2}(-1+\sqrt{2} \pm i \sqrt{1+2 \sqrt{2}})\right\} .
$$

Hence f can not be written as a product of polynomials of degree 2 and is irreducible over Q.

Denote by

$$
\begin{aligned}
& a_{1}=\frac{1}{2}(-1-\sqrt{2}+\sqrt{-1+2 \sqrt{2}}) \\
& a_{2}=\frac{1}{2}(-1+\sqrt{2}+i \sqrt{1+2 \sqrt{2}}) .
\end{aligned}
$$

Hence $\left[\mathbb{Q}\left(a_{1}\right): \mathbb{Q}\right]=4$ and we have that $\left[\mathbb{Q}\left(a_{1}, a_{2}\right): \mathbb{Q}\left(a_{1}\right)\right]=2$, since a_{2} is a root of $x^{2}+(1-\sqrt{2}) x+1$ and $1-\sqrt{2} \in \mathbb{Q}\left(a_{1}\right)$. Thus $|\operatorname{Gal}(E: \mathbb{Q})|=8$, where E is the splitting field of f over \mathbb{Q}.

This means that $\operatorname{Gal}(E / \mathrm{Q})$, seen as a subgroup of S_{4}, is precisely the subgroup W_{2} of permutations respecting the partition $\{1,2,3,4\}=\{1,3\} \cup\{2,4\}$. This is given by

$$
W_{2}=\{\mathrm{id},(13)(24),(12)(34),(14)(23),(1234),(1432),(13),(24)\}
$$

which by numbering the vertices of a square counterclockwise from 1 to 4 can be seen to be isomorphic to D_{4}, the dihedral group on 4 elements.
3. Let $p>2$ be a prime number and $\zeta:=e^{\frac{2 \pi i}{p}}$. Let $E=\mathbb{Q}(\zeta)$. Recall that $\operatorname{Gal}(E: \mathbb{Q}) \cong$ $(\mathbb{Z} / p \mathbb{Z})^{\times}$.
(a) Show that there exists a unique subgroup H of $\operatorname{Gal}(\mathbb{Q}(\zeta): \mathbb{Q})$ of order 2. What is its generator? [Hint: It is an element of order 2]
(b) Prove that $\mathbb{Q}\left(\zeta+\zeta^{-1}\right) \subseteq E^{H}$ and that $\left[E: \mathbb{Q}\left(\zeta+\zeta^{-1}\right)\right] \leqslant 2$.
(c) Deduce that $E^{H}=\mathrm{Q}\left(\zeta+\zeta^{-1}\right)$.

Solution: An isomorphism $(\mathbb{Z} / p \mathbb{Z})^{\times} \xrightarrow{\sim} \operatorname{Gal}(\mathbb{Q}(\zeta): \mathbb{Q})$ is given by $k+p \mathbb{Z} \mapsto\left(\zeta \mapsto \zeta^{k}\right)$ for each $k \in \mathbb{Z}$. Recall that an automorphism of $\mathbb{Q}(\zeta)$ (fixing \mathbb{Q}) is indeed uniquely determined by the image of ζ, which in turn needs to be another root of $\frac{X^{p}-1}{X-1}=X^{p-1}+X^{p-2}+\cdots+$ $X+1$.
(a) By Algebra I , we know that $(\mathbb{Z} / p \mathbb{Z})^{\times}$is cyclic of order $p-1$ because $\mathbb{Z} / p \mathbb{Z}$ is a finite field. And $p-1$ is divisible by 2 since p is odd. Hence $\operatorname{Gal}(\mathbb{Q}(\zeta): \mathbb{Q})$ has a unique subgroup of order 2. It is generated by the $\frac{p-1}{2}$-th power of a generator of $\operatorname{Gal}(\mathbb{Q}(\zeta): \mathbb{Q})$. Only one element $\operatorname{Gal}(\mathbb{Q}(\zeta): \mathbb{Q})$ can have order 2 , because two distinct such elements generate distinct subgroups of order 2 .
We also know that complex conjugation $\sigma: x \mapsto \bar{x}$ belongs to $\operatorname{Gal}(\mathbb{Q}(\zeta): \mathbb{Q})$ which clearly has order 2, so that $H=\langle\sigma\rangle$.
(b) As $|\zeta|=1$, we see that $\zeta^{-1}=\bar{\zeta}$, so that σ actually corresponds to the class of $-1 \in$ $(\mathbb{Z} / p \mathbb{Z})^{\times}$.
We have

$$
\sigma\left(\zeta+\zeta^{-1}\right)=\sigma(\zeta)+\sigma\left(\zeta^{-1}\right)=\zeta^{-1}+\zeta
$$

so that $\zeta+\zeta^{-1} \in E^{H}$. As E^{H} is a subfield of E, we can conclude that $\mathbb{Q}\left(\zeta+\zeta^{-1}\right) \subset E$. Notice that ζ is a root of $(X-\zeta)\left(X-\zeta^{-1}\right)=X^{2}-\left(\zeta+\zeta^{-1}\right) X+1 \in \mathbb{Q}\left(\zeta+\zeta^{-1}\right)[X]$, so that $\left[E: \mathbb{Q}\left(\zeta+\zeta^{-1}\right] \leqslant 2\right.$.
(c) By the Galois correspondence $\left[E: E^{H}\right]=|H|=2$. Hence we know that

$$
2 \cdot\left[E^{H}: \mathbb{Q}\left(\zeta+\zeta^{-1}\right)\right]=\left[E: \mathbb{Q}\left(\zeta+\zeta^{-1}\right)\right] \leqslant 2
$$

so that $\left[E^{H}: \mathbb{Q}\left(\zeta+\zeta^{-1}\right)\right]=1$, meaning that $E^{H}=\mathbb{Q}\left(\zeta+\zeta^{-1}\right)$.
4. Let $E: k$ be a finite Galois extension with Galois group $G=\operatorname{Gal}(E: k)$ of degree $n=[E$: $k]$. Define the trace $T: E \longrightarrow E$ by

$$
T(x)=\sum_{\sigma \in G} \sigma(x) .
$$

(a) Prove that $\operatorname{im}(T) \subseteq k$ and that T is k-linear.
(b) Show that T is not identically zero and deduce that $\operatorname{dim}(\operatorname{ker}(T))=n-1$.
(c) Now suppose that $\operatorname{Gal}(E: k)$ is cyclic and generated by an automorphism σ. Consider the linear map $\tau=\sigma-\mathrm{id}_{E}$. Prove that

$$
\operatorname{ker}(T)=\operatorname{im}(\tau)=\{\sigma(u)-u: u \in E\} .
$$

Solution:

(a) Let $\tau \in G$. For each $x \in E$,

$$
\tau(T(x))=\tau\left(\sum_{\sigma \in G} \sigma(x)\right)=\sum_{\sigma \in G} \tau \sigma(x)=T(x),
$$

because $\sigma \mapsto \tau \sigma$ is a bijection $G \longrightarrow G$. By arbitrarity of τ and $x \in E$, the image of T is in E^{G}, which coincides with k because $E: k$ is Galois.
In order to prove that T is k-linear, let $x, y \in E$ and $a \in k$. Then

$$
T(x+a y)=\sum_{\sigma \in G} \sigma(x+a y)=\sum_{\sigma \in G}(\sigma(x)+a \sigma(y))=T(x)+a T(y) .
$$

(b) The map $T \in \operatorname{Hom}\left(E^{\times}, E\right)$ is a non-trivial linear combination of the finitely elements $\sigma \in \operatorname{Gal}(E: k)=\operatorname{Aut}_{k}\left(E^{\times}\right)$. Hence $T \neq 0$. Then the image of T is a non-zero k-linear subspace of k, since we have seen in the Single Choice 10 Exercise 2b) that $\operatorname{im}(T)=k$, so that $\operatorname{dim}(\operatorname{im}(T))=1$. Then by the First Isomorphism theorem we conclude

$$
\operatorname{dim}(\operatorname{ker}(T))=n-\operatorname{dim}(\operatorname{im}(T))=n-1
$$

(c) We notice that $\operatorname{ker}(\tau)=\{u \in E: \sigma(u)=u\}=E^{G}=k$, because σ generates G so that the elements of E fixed by σ are fixed by the whole G. Again from the First Isomorphism theorem, we obtain

$$
\operatorname{dim}(\operatorname{im}(\tau))=n-\operatorname{dim}(\operatorname{ker}(\tau))=n-1
$$

As $\operatorname{ker}(T)$ and $\operatorname{im}(\tau)$ have the same dimension, it suffices to show that one is contained in the other. We show that $\operatorname{im}(\tau) \subset \operatorname{ker}(T)$: for all $x \in E$,

$$
T(\sigma(x)-x)=\sum_{\sigma^{\prime} \in G} \sigma^{\prime}(\sigma(x)-x)=\sum_{\sigma^{\prime} \in G} \sigma^{\prime} \sigma(x)-\sum_{\sigma^{\prime} \in G} \sigma^{\prime}(x)=T(x)-T(x)=0 .
$$

5. Let p be an odd prime number. Let $\zeta=e^{\frac{2 \pi i}{p}} \in \mathbb{C}$ and $E=\mathbb{Q}(\zeta)$. Recall that $\operatorname{Gal}(E: \mathbb{Q}) \cong$ \mathbb{F}_{p}^{\times}. For $a \in \mathbb{F}_{p}^{\times}$, define the Legendre symbol

$$
\left(\frac{a}{p}\right)= \begin{cases}1 & \text { if } a \text { is a square in } \mathbb{F}_{p}^{\times} \\ -1 & \text { if } a \text { is a not square in } \mathbb{F}_{p}^{\times} .\end{cases}
$$

Define the complex number

$$
\tau=\sum_{a \in \mathbb{F}_{p}^{\times}}\left(\frac{a}{p}\right) \zeta^{a} .
$$

(a) Show that the map $\mathbb{F}_{p}^{\times} \rightarrow\{ \pm 1\}$ sending $a \mapsto\left(\frac{a}{p}\right)$ is a group homomorphism.
(b) Prove that

$$
\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \quad(\bmod p)
$$

and that this determines $\left(\frac{a}{p}\right) \in\{ \pm 1\}$ uniquely.
(c) Show that $\left(\frac{-1}{p}\right)=1$ if and only if $p \equiv 1(\bmod 4)$.
(d) For $b \in \mathbb{F}_{p}^{\times}$, let $\sigma_{b} \in \operatorname{Gal}(E: \mathbb{Q})$ be the automorphism $\sigma_{b}(\zeta)=\zeta^{b}$. Prove the equality $\sigma_{b}(\tau)=\left(\frac{b}{p}\right) \cdot \tau$.
(e) Prove that $\mathbb{Q}(\tau): \mathbb{Q}$ is the unique quadratic intermediate extension of $E: \mathbb{Q}$.

We now want to determine the extension $\mathbb{Q}(\tau)$ by computing τ^{2} explicitly.
(f) Let $c \in \mathbb{F}_{p}^{\times}$. Show that

$$
\sum_{a \in \mathbb{F}_{p}^{\times}} \zeta^{a(1+c)}= \begin{cases}-1 & \text { if } c \neq p-1 \\ p-1 & \text { if } c=p-1\end{cases}
$$

(g) Write

$$
\tau^{2}=\sum_{a \in \mathbb{F}_{p}^{\times}} \sum_{b \in \mathbb{F}_{p}^{\times}}\left(\frac{a b}{p}\right) \zeta^{a+b} .
$$

Substituting $b=a c$ with $c \in \mathbb{F}_{p}^{\times}$, deduce that

$$
\tau^{2}=-\sum_{c=1}^{p-2}\left(\frac{c}{p}\right)+\left(\frac{-1}{p}\right)(p-1) .
$$

(h) Conclude: if $p \equiv 1(\bmod 4)$, then $\mathbb{Q}(\tau)=\mathbb{Q}(\sqrt{p})$; if $p \equiv 3(\bmod 4)$, then $\mathbb{Q}(\tau)=$ $\mathrm{Q}(i \sqrt{p})$.

Solution:

(a) The group \mathbb{F}_{p}^{\times}is cyclic of even order $p-1$. Since it is abelian, the map $s: \mathbb{F}_{p}^{\times} \longrightarrow \mathbb{F}_{p}^{\times}$ sending $x \mapsto x^{2}$ is a group homomorphism. The set of squares in \mathbb{F}_{p}^{\times}is given by

$$
S=\left\{s(x), x \in \mathbb{F}_{p}^{\times}\right\}=\operatorname{im}(s) .
$$

By the First Isomorphism theorem, s induces an isomorphism $\mathbb{F}_{p}^{\times} / \operatorname{ker}(s) \xrightarrow{\sim} S$. Moreover $\operatorname{ker}(s)=\left\{x \in \mathbb{F}_{p}^{\times}: x^{2}=1\right\}=\{ \pm 1\}$ because it contains the roots of the degree-2 polynomial $X^{2}-1 \in \mathbb{F}_{p}[X]$. Hence S is a subgroup of order 2 of \mathbb{F}_{p}^{\times}, implying that for $a, b \in \mathbb{F}_{p}^{\times}$the element $a b \in \mathbb{F}_{p}^{\times}$is a square if and only if a and b are both square or both are not squares. In particular, the given map is a group homomorphism.
(b) The group \mathbb{F}_{p}^{\times}is the set of roots of $X^{p-1}-1 \in \mathbb{F}_{p}[X]$. Since $X^{p-1}-1=\left(X^{\frac{p-1}{2}}-\right.$ 1) ($X^{\frac{p-1}{2}}+1$), we know that precisely $\frac{p-1}{2}$ elements in $a \in \mathbb{F}_{p}^{\times}$satisfy $a^{\frac{p-1}{2}}=1$, the others satisfying $a^{\frac{p-1}{2}}=-1$. If $a=b^{2}$ for $b \in \mathbb{F}_{p}^{\times}$, then $a^{\frac{p-1}{2}}=b^{2 \cdot \frac{p-1}{2}}=1$. Since by part (a) there are precisely $\frac{p-1}{2}$ squares in \mathbb{F}_{p}^{\times}, we conclude that $a^{\frac{p-1}{2}}=-1 \in \mathbb{F}_{p}$ when a is not a square. Hence $a^{\frac{p-1}{2}} \equiv\left(\frac{a}{p}\right)(\bmod p)$ for each $a \in \mathbb{F}_{p}^{\times}$.
(c) By part (b),

$$
\left(\frac{-1}{p}\right)=(-1)^{\frac{p-1}{2}}
$$

which is 1 if and only if $p-1$ is divisible by 4 , that is, if and only if $p \equiv 1(\bmod 4)$.
(d) The power ζ^{a} for $a \in \mathbb{F}_{p}$ is well defined, because $\zeta^{p m}=1$ for each $m \in \mathbb{Z}$. Clearly, $\tau \in E$ by definition. For each $b \in \mathbb{F}_{p}^{\times}$, we compute

$$
\begin{aligned}
\sigma_{b}(\tau) & =\sigma_{b}\left(\sum_{a \in \mathbb{F}_{p}^{\times}}\left(\frac{a}{p}\right) \zeta^{a}\right)=\sum_{a \in \mathbb{F}_{p}^{\times}}\left(\frac{a}{p}\right) \sigma_{b}(\zeta)^{a}=\sum_{a \in \mathbb{F}_{p}^{\times}}\left(\frac{b}{p}\right)\left(\frac{b}{p}\right)\left(\frac{a}{p}\right) \zeta^{b a} \\
& =\left(\frac{b}{p}\right) \sum_{a \in \mathbb{F}_{p}^{\times}}\left(\frac{b a}{p}\right) \zeta^{b a}=\left(\frac{b}{p}\right) \tau,
\end{aligned}
$$

in the last step having used the fact that $\left\{b a: a \in \mathbb{F}_{p}^{\times}\right\}=\mathbb{F}_{p}^{\times}$for each $b \in \mathbb{F}_{p}^{\times}$, which holds because \mathbb{F}_{p}^{\times}is a group.
(e) By part (d), we see that $\sigma_{b}\left(\tau^{2}\right)=\left(\frac{b}{p}\right)^{2} \tau^{2}=\tau^{2}$ for each $b \in \mathbb{F}_{p}$, so that $\tau^{2} \in$ $E^{\operatorname{Gal}(E: \mathbb{Q})}=\mathbb{Q}$. Moreover, $\sigma_{b}(\tau) \neq \tau$ when b is not a square in \mathbb{F}_{p}^{\times}(which is the case for half of the elements of \mathbb{F}_{p}^{\times}), so that $\tau \notin \mathbb{Q}$. Hence $\mathbb{Q}(\tau)$: \mathbb{Q} is a quadratic extension.
On the other hand, the Galois group $\operatorname{Gal}(E: \mathbb{Q}) \cong \mathbb{F}_{p}^{\times}$is cyclic of even order $p-1$, so it contains precisely one subgroup of index 2 (that is, of order $\frac{p-1}{2}$). Hence, there is precisely one quadratic extension $L: \mathbb{Q}$ contained in E (that is, such that $[E: L]=$ $\frac{p-1}{2}$), which is then given by $\mathrm{Q}(\tau)$.
(f) For $c=p-1$, we get

$$
\sum_{a \in \mathbb{F}_{p}^{\times}} \zeta^{a(1+c)}=\sum_{a \in \mathbb{F}_{p}^{\times}} \zeta^{a p}=\sum_{a \in \mathbb{F}_{p}^{\times}}\left(\zeta^{p}\right)^{a}=\sum_{a \in \mathbb{F}_{p}^{\times}} 1=p-1 .
$$

Else, $1+c \in \mathbb{F}_{p}^{\times}$, so that $\left\{a(1+c): a \in \mathbb{F}_{p}^{\times}\right\}=\mathbb{F}_{p}^{\times}$and

$$
\sum_{a \in \mathbb{F}_{p}^{\times}} \zeta^{a(1+c)}=\sum_{a \in \mathbb{F}_{p}^{\times}} \zeta^{a}=-1+\sum_{a \in \mathbb{F}_{p}} \zeta^{a}=-1
$$

because ζ is a root of $\sum_{a=0}^{p-1} X^{a}=\frac{X^{p}-1}{X-1} \in \mathbb{Z}[X]$.
(g) Since $\left\{a c: c \in \mathbb{F}_{p}^{\times}\right\}=\mathbb{F}_{p}^{\times}$, we can perform the suggested substitution, as follows:

$$
\begin{aligned}
\tau^{2} & =\sum_{a \in \mathbb{F}_{p}^{\times}} \sum_{b \in \mathbb{F}_{p}^{\times}}\left(\frac{a b}{p}\right) \zeta^{a+b}=\sum_{a \in \mathbb{F}_{p}^{\times}} \sum_{c \in \mathbb{F}_{p}^{\times}}\left(\frac{a(a c)}{p}\right) \zeta^{a+a c}=\sum_{a \in \mathbb{F}_{p}^{\times}} \sum_{c \in \mathbb{F}_{p}^{\times}}\left(\frac{a^{2} c}{p}\right) \zeta^{a(1+c)} \\
& =\sum_{a \in \mathbb{F}_{p}^{\times}} \sum_{c \in \mathbb{F}_{p}^{\times}}\left(\frac{c}{p}\right) \zeta^{a(1+c)}=\sum_{c \in \mathbb{F}_{p}^{\times}}\left(\frac{c}{p}\right) \sum_{a \in \mathbb{F}_{p}^{\times}} \zeta^{a(1+c) \stackrel{(\mathrm{f})}{=}\left(\frac{-1}{p}\right)(p-1)-\sum_{c=1}^{p-2}\left(\frac{c}{p}\right)}
\end{aligned}
$$

(h) The above sum reads

$$
\tau^{2}=\left(\frac{-1}{p}\right) p-\left(\frac{-1}{p}\right)-\sum_{c=1}^{p-2}\left(\frac{c}{p}\right)=\left(\frac{-1}{p}\right) p-\sum_{c \in \mathbb{F}_{p}^{\times}}\left(\frac{c}{p}\right)=\left(\frac{-1}{p}\right) p
$$

because $\left(\frac{c}{p}\right)$ attains the values 1 and -1 an equal number of times for $c \in \mathbb{F}_{p}^{\times}$. If $p \equiv 1(\bmod 4)$, then

$$
\tau^{2}=p
$$

so that $\tau= \pm \sqrt{p}$ and $\mathbb{Q}(\tau)=\mathbb{Q}(\sqrt{p})$ is a quadratic real extension of \mathbb{Q}.
Else, $p \equiv 3(\bmod 4)$,

$$
\tau^{2}=-p
$$

so that $\tau= \pm i \sqrt{p}$ and $\mathbb{Q}(\tau)=\mathbb{Q}(i \sqrt{p})$ is a quadratic imaginary extension of \mathbb{Q}.
6. Let $L: K$ be a finite Galois extension with Galois group G. Let G^{\prime} denote the commutator subgroup $[G, G]$ generated by all commutators $x y x^{-1} y^{-1}$ in G. Show that $L^{G^{\prime}}: K$ is a Galois extension with $\operatorname{Gal}\left(L^{G^{\prime}}: K\right)$ abelian. Show that any Galois extension $E: K$ with $E \subset L$ and $\operatorname{Gal}(E: K)$ abelian is contained in $L^{G^{\prime}}$.
Solution: We know that G^{\prime} is a normal subgroup of G because

$$
z[x, y] z^{-1}=\left[z x z^{-1}, z y z^{-1}\right]
$$

so by the Galois correspondence, the extension $L^{G^{\prime}}: K$ is indeed a Galois extension. Its Galois group is G / G^{\prime}, which is abelian.
If $L: E: K$ is such that $E: K$ is Galois with abelian Galois group, then the subgroup $H=$ $\operatorname{Gal}(L: E)$ is normal with G / H abelian. It follows that $H \supset G^{\prime}$ (because any commutator maps to 1 in $G / H)$, and therefore by the Galois correspondance that $E \subset L^{G^{\prime}}$.
7. For all ideals $\mathfrak{a}, \mathfrak{b}, \mathfrak{c}$ and all elements x, y of a ring R show the formulas
(a) $(x)(y)=(x y)$
(b) $\mathfrak{a}(\mathfrak{b c})=(\mathfrak{a b}) \mathfrak{c}$
(c) $(x) \cdot((y) \cdot \mathfrak{a})=(x y) \cdot \mathfrak{a}$

Solution:

(a) Let $r \in(x)(y)$. Then $r=\sum_{i=1}^{n} x_{i} y_{i}$ with $x_{i} \in(x)$ and $y_{i} \in(y)$. Write $x_{i}=a_{i} x$ and $y_{i}=b_{i} y$ for $a_{i}, b_{i} \in R$. Then we have

$$
r=\sum_{i=1}^{n}\left(a_{i} x\right) \cdot\left(b_{i} y\right)=\sum_{i=1}^{n}\left(a_{i} b_{i}\right) \cdot x y=\left(\sum_{i=1}^{n} a_{i} b_{i}\right) \cdot x y \in(x y) .
$$

This proves the inclusion \subset. For the reverse inclusion we write any $r \in(x y)$ in the form $r=a x y=a x \cdot y$ for some $a \in R$. This directly shows that $r \in(x)(y)$, proving the inclusion \supset.
(b) Let $x \in \mathfrak{a}(\mathfrak{b c})$. Then $x=\sum_{i=1}^{n} a_{i} d_{i}$ where $a_{i} \in \mathfrak{a}$ and $d_{i} \in \mathfrak{b c}$. Similarly each $d_{i}=$ $\sum_{j=1}^{m_{i}} b_{i, j} c_{i, j}$ with $b_{i, j} \in \mathfrak{b}$ and $c_{i, j} \in \mathfrak{c}$. Hence we have

$$
x=\sum_{i=1}^{n} a_{i} d_{i}=\sum_{i=1}^{n} a_{i}\left(\sum_{j=1}^{m_{i}} b_{i, j} c_{i, j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{m_{i}}\left(a_{i} b_{i, j}\right) c_{i, j} .
$$

Now $\left(a_{i} b_{i, j}\right) c_{i, j} \in(\mathfrak{a b}) \mathfrak{c}$ for each i. Since ideals are closed under addition, we see that $x \in(\mathfrak{a b}) \mathfrak{c}$. We have thus shown the inclusion" \subset ". The argument for " \supset " is analogous.
(c) Using first (b) and then (a) shows that $(x) \cdot((y) \cdot \mathfrak{a})=((x) \cdot(y)) \cdot \mathfrak{a}=(x y) \cdot \mathfrak{a}$.
8. Decide which of the following ideals of $\mathbb{Q}[X, Y, Z]$ are equal:

$$
\begin{array}{ll}
I_{1}:=(X, Y) & I_{5}:=(X Z, X-Y, X+Y) \\
I_{2} & :=(X, Y, Z) \\
I_{3}:=\left(X^{2}, Y^{2}, Z\right) & I_{6}:=\left(X^{2}+Y^{2}, Z-Y^{2}, Z-X^{2}\right) \\
I_{4}:=\left(X Z, X^{2}, Y^{2}\right) & I_{7}:=\left(X Z, Y^{2}-5 X^{2}, X^{2}-X Z\right)
\end{array}
$$

Solution: For each monomial M, the ideal (M) consists of those polynomials in which only those monomials occur that are divisible by M. For any monomials M_{1}, \ldots, M_{n}, $\left(M_{1}, \ldots, M_{n}\right)$ therefore consists of those polynomials in which only those monomials occur that are divisible by at least one of the M_{i}. Thus Z lies in the ideals I_{2} and I_{3}, but not in I_{1} or I_{4}. Furthermore, Y lies in the ideals I_{1} and I_{2}, but not in I_{3} or I_{4}. Therefore, the ideals I_{1} to I_{4} are all different.
Then I_{5} contains the two elements

$$
\begin{aligned}
& \frac{1}{2} \cdot((X+Y)+(X-Y))=X \quad \text { and } \\
& \frac{1}{2} \cdot((X+Y)-(X-Y))=Y
\end{aligned}
$$

Conversely, since $X \pm Y$ are linear combinations of these elements, this ideal is equal to $(X Z, X, Y)$. Here, $X Z$ is already a multiple of X; we can therefore omit this generating end. Therefore, $I_{5}=(X, Y)=I_{1}$.
We calculate analogously

$$
\begin{aligned}
\frac{1}{2} \cdot\left(\left(X^{2}+Y^{2}\right)+\left(Z-Y^{2}\right)+\left(Z-X^{2}\right)\right) & =Z \quad \text { and } \\
Z-\left(Z-X^{2}\right) & =X^{2} \quad \text { and } \\
Z-\left(Z-Y^{2}\right) & =Y^{2} .
\end{aligned}
$$

Conversely, $X^{2}+Y^{2}, Z-Y^{2}, Z-X^{2}$ are already linear combinations of Z, X^{2}, Y^{2}; thus the ideal I_{6} is equal to I_{3}.

Finally, we calculate

$$
\begin{aligned}
X Z+\left(X^{2}-X Z\right) & =X^{2} \quad \text { and } \\
\left(Y^{2}-5 X^{2}\right)+5 \cdot X^{2} & =Y^{2}
\end{aligned}
$$

Conversely, $Y^{2}-5 X^{2}$ and $X^{2}-X Z$ are already linear combinations of $X Z, X^{2}, Y^{2}$; thus the ideal I_{7} is equal to I_{4}.
9. For $\omega=e^{\frac{2 \pi i}{3}}$ consider the ring $R:=\mathbb{Z}[\omega] \subset \mathbb{C}$ with the field norm

$$
N: R \rightarrow \mathbb{Z}_{\geqslant 0}, a+b \omega \mapsto a^{2}-a b+b^{2}
$$

(a) Show that the field norm N is multiplicative.
(b) Prove that R is a Euclidean ring with respect to N.
(c) Determine the group of units R^{\times}. [Hint: Use part (b).]
(d) Write $5+\omega$ as a product of prime elements from R.
(e) Prove that each prime element of R divides exactly one prime number $p \in \mathbb{Z}$.

Solution:
(a) The field norm N satisfies $N(1)=1$ and is multiplicative: for all $a=r+s \omega, b=$ $u+v \omega \in R$, with $r, s, u, v \in \mathbb{Z}$, we have

$$
\begin{aligned}
N(a b) & =N((r+s \omega)(u+v \omega)) \\
& =N\left(r u+(r v+s u) \omega+s v \omega^{2}\right) \\
& =N((r u-s v)+(r v+s u-s v) \omega) \\
& =(r u-s v)^{2}-(r u-s v)(r v+s u-s v)+(r v+s u-s v)^{2} \\
& =\left(r^{2}-r s+s^{2}\right)\left(u^{2}-u v+v^{2}\right) \\
& =N(a) N(b) .
\end{aligned}
$$

(b) Let $x, y \in R$ with $y \neq 0$. We can write $\frac{x}{y}=a+b \omega$ with $a, b \in \mathbb{Q}$. Choose $m, n \in \mathbb{Z}$ such that

$$
|a-m| \leqslant \frac{1}{2} \quad \text { and } \quad|b-n| \leqslant \frac{1}{2}
$$

and let $q:=m+n \omega$ and $r:=x-y q$. From our construction we obtain:

$$
N\left(\frac{x}{y}-q\right)=(a-m)^{2}-(a-m)(b-n)+(b-n)^{2} \leqslant\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}<1 .
$$

Then we have $x=y q+r$ with

$$
N(r)=N(x-y q)=N(y) N\left(\frac{x}{y}-q\right)<N(y) .
$$

Thus R is a Euclidean ring for the function N.
(c) If $s \in R^{\times}$is a unit, then also $s^{-1} \in R^{\times}$. Hence

$$
N(s) \cdot N\left(s^{-1}\right)=N\left(s s^{-1}\right)=N(1)=1 .
$$

On the other hand, to determine all the elements $s \in R$ with $N(s)=1$, we can use the quadratic formula for the equation $x^{2}-x y+y^{2}-1=0$ to obtain

$$
\begin{aligned}
& y=\frac{1}{2}\left(x-\sqrt{4-3 x^{2}}\right) \\
& y=\frac{1}{2}\left(\sqrt{4-3 x^{2}}+x\right) .
\end{aligned}
$$

Considering possible integer solutions for the equations above, we obtain that $\pm 1, \pm \omega$ are the only elements $s \in R$ with $N(s)=1$. Hence

$$
s \in R^{\times} \Longleftrightarrow N(s)=1 \Longleftrightarrow s \in\{ \pm 1, \pm \omega, \pm(1+\omega)\} .
$$

(d) Since $N(5 \omega+1)=21$, we can write $5 \omega+1$ as a product of at most two elements $s, r \in R \backslash R^{\times}$of norm 3 and 7 . Since N is multiplicative, we have that r and s have to be irreducible. By trying out, we find that the element $N(1-\omega)=3$ and $N(3+\omega)=7$, and that there is a decomposition

$$
5 \omega+1=(1-\omega)(3+\omega) \cdot \omega
$$

where $\omega \in R^{\times}$by part (c). The ring R is Euclidean, so it is also factorial, which means that irreducible elements are prime and the decomposition above is a product of prime elements.
(e) Let $a=r+s \omega \in R$ be prime. Since a is not a unit, we have $N(a)>1$ since $N(a)=$ $r^{2}+s^{2}-r s=\frac{1}{2}\left(r^{2}+s^{2}-2 r s\right)+\frac{1}{2}\left(r^{2}+s^{2}\right) \geqslant 0$, so that $N(a)$ has a non-trivial decomposition into prime numbers $N(a)=p_{1} \cdots p_{k}$. Note that $N(a)=N(r+s \omega) N\left(r+s \omega^{2}\right)=a \cdot \bar{a}$, so that a divides at least one prime number p_{i}, since a is prime.

Let us assume that a divides two different prime numbers p and q. Then we have that 1 is a \mathbb{Z}-linear combination of p and q and hence also a R-linear combination. Hence a divides the elements $1 \in R$, which is a contradiction.

