Solutions Exercise sheet 2

1. Decide whether the following polynomials are irreducible in $\mathbb{Q}[X]$.
(a) $X^{3}-3 X^{2}-8$
(b) $2 X^{10}-25 X^{3}+10 X+30$
(c) $2 X^{3}+X^{2}+2 X+2$
(d) $X^{4}+X^{2}+1$

Solution:

(a) We will show that the polynomial is irreducible. If $f(X):=X^{3}-3 X^{2}-8$ is reducible in $\mathbb{Z}[X]$, then it must then have a linear factor $X-a$ in $\mathbb{Z}[X]$ with a a divisor of 8 , which are $\pm 1, \pm 2 \pm 4 \pm 8$. Checking the value at all these points we see that none of them is a zero of the polynomial. Therefore f is irreducible in $\mathbb{Z}[X]$, so by Gauss's lemma f is also irreducible in $\mathbb{Q}[X]$.
(b) We will use Eisenstein's criteria with $p=5$: note that p divides all the lower coefficients, $-25,10$ and 30 , but $p \nmid 2$ and $p^{2} \nmid 30$. Hence the polynomial is irreducible.
(c) In $\mathbb{Z} / 3 \mathbb{Z}$ the polynomial is again congruent to $\bar{f}(X)=\overline{2} x^{3}+x^{2}+\overline{2} x+\overline{2}$, and if it is reducible, then it must have a linear factor, since it has degree 3 . We can check:

$$
\begin{aligned}
& \bar{f}(\overline{0})=\overline{2} \\
& \bar{f}(\overline{1})=\overline{1} \\
& \bar{f}(\overline{2})=\overline{2}
\end{aligned}
$$

so f is irreducible in $\mathbb{Q}[X]$.
(d) This is reducible:

$$
X^{4}+X^{2}+1=\left(X^{2}+X+1\right)\left(X^{2}-X+1\right) .
$$

2. Consider the ring $R=\mathbb{Z}[X] /\left(X^{2}+5\right)$.
(a) Show that R is an integral domain.
(b) Show that R is not a unique factorization domain.

Solution: (a) The polynomial $X^{2}+5$ has no roots in \mathbb{Z}, so it is irreducible in $\mathbb{Z}[X]$. Since \mathbb{Z} is a unique factorization domain, we have that $\mathbb{Z}[X]$ is a unique factorization domain as well. Hence $X^{2}+5$ is prime. Hence R is an integral domain.
(b) By the First isomorphism theorem, we have that $R \cong \mathbb{Z}[\sqrt{-5}]$. Also, note that $\mathbb{Z}[\sqrt{-5}]=$ $\mathbb{Z}+\sqrt{-5} \mathbb{Z}$. We can define a norm function on $\mathbb{Z}[\sqrt{-5}]$ as

$$
N: \mathbb{Z}[\sqrt{-5}] \rightarrow \mathbb{Z}_{\geqslant 0}, a+b \sqrt{-5} \mapsto(a+b \sqrt{-5})(a-b \sqrt{-5})=a^{2}+5 b^{2}
$$

Similarly as in Exercise sheet 1, Exercise 3 (c), we can see that N is multiplicative and $s \in \mathbb{Z}[\sqrt{-5}]^{*} \Longleftrightarrow N(s)=1$.
Claim: The element 2 is irreducible in $\mathbb{Z}[\sqrt{-5}]$.
Suppose there exist $a, b, c, d \in \mathbb{Z}$ with

$$
2=(a+b \sqrt{-5})(c+d \sqrt{-5}) .
$$

Taking the norm N on both sides gives

$$
4=\left(a^{2}+5 b^{2}\right)\left(c^{2}+5 d^{2}\right)
$$

which means $a^{2}+5 b^{2} \in\{1,2,4\}$. If $a^{2}+5 b^{2}=1$, then $a= \pm 1$ and $b=0$, which means $a+b \sqrt{-5}= \pm 1$ which is a unit, and we are done. If $a^{2}+5 b^{2}=4$, then $a= \pm 2$ and $b=0$ which means

$$
c+\sqrt{-5} d=\frac{2}{a+\sqrt{-5 b}}=\frac{2}{2}=1,
$$

is a unit, which means we're done. Finally, notice that $a^{2}+5 b^{2}=2$ had no solutions in \mathbb{Z}. Hence 2 is irreducible in $\mathbb{Z}[\sqrt{-5}]$.
Now, note that $2 \mid 6=(1+\sqrt{-5})(1-\sqrt{-5})$, but $2 \nmid(1+\sqrt{-5}),(1-\sqrt{-5})$. Since, if for example $2 \mid 1+\sqrt{-5}$, then there exist $a, b \in \mathbb{Z}$ such that $1+\sqrt{-5}=2(a+b \sqrt{-5})$, which means $2 a=1$ and $2 b=1$, which again is not solvable in \mathbb{Z}. Similarly we can argue for $1-\sqrt{-5}$.
Hence 2 is not prime, but it is irreducible. Since in a unique factorization domain an element is irreducible if and only if it is prime, we have that $\mathbb{Z}[\sqrt{-5}]$ is not a unique factorization domain.
3. Consider the ring $R:=\mathbb{Z}[\sqrt{-2}]$.
(a) Show that R is a Euclidean domain with the norm function

$$
N: R \rightarrow \mathbb{Z}_{\geqslant 0}, a+b \sqrt{-2} \mapsto a^{2}+2 b^{2} .
$$

(b) Show that the norm N is multiplicative and hence if $r \mid s$ in $\mathbb{Z}[\sqrt{-2}]$, then $N(r)$ divides $N(s)$.
(c) Show that the only units in $\mathbb{Z}[\sqrt{-2}]$ are ± 1.

Solution: Let $x, y \in R$ with $y \neq 0$. We can write $\frac{x}{y}=a+b \sqrt{-2}$ with $a, b \in \mathbb{Q}$. Choose $m, n \in \mathbb{Z}$ such that

$$
|a-m| \leqslant \frac{1}{2} \quad \text { and } \quad|b-n| \leqslant \frac{1}{2}
$$

and let $q:=m+n \sqrt{-2}$ and $r:=x-y q$. From our construction we obtain:

$$
\left|\frac{x}{y}-q\right|^{2}=(a-m)^{2}+2(b-n)^{2} \leqslant\left(\frac{1}{2}\right)^{2}+2 \cdot\left(\frac{1}{2}\right)^{2}=\frac{3}{4}<1 .
$$

Then we have $x=y q+r$ with

$$
N(r)=|x-y q|^{2}=N(y)\left|\frac{x}{y}-q\right|^{2}<N(y) .
$$

Thus R is a Euclidean domain for the function N.
(b) The field norm N satisfies $N(1)=1$ and is multiplicative: for all $a=a_{1}+a_{2} \sqrt{-2}, b=$ $b_{1}+b_{2} \sqrt{-2} \in R$, with $a_{i}, b_{j} \in \mathbb{Z}$, we have

$$
\begin{aligned}
N(a b) & =N\left(\left(a_{1} b_{1}-2 a_{2} b_{2}\right)+\left(a_{1} b_{2}+a_{2} b_{1}\right) \sqrt{-2}\right) \\
& =\left(a_{1} b_{1}-2 a_{2} b_{2}\right)^{2}+2\left(a_{1} b_{2}+a_{2} b_{1}\right)^{2} \\
& =\left(a_{1}^{2}+2 a_{2}^{2}\right)\left(b_{1}^{2}+2 b_{2}^{2}\right)=N(a) N(b) .
\end{aligned}
$$

(c) If $s \in R^{\times}$is a unit, then also $s^{-1} \in R^{\times}$. Hence

$$
N(s) \cdot N\left(s^{-1}\right)=N\left(s s^{-1}\right)=N(1)=1,
$$

and thus $N(s)=1$.
On the other hand, are ± 1 the only elements $s \in R$ with $N(s)=1$. Hence

$$
s \in R^{\times} \Longleftrightarrow N(s)=1 \Longleftrightarrow s= \pm 1 .
$$

4. The goal of this exercise is to show that the only integral solutions of the diophantine equation $y^{2}=x^{3}-2$ are $(x, y)=(3,5)$ and $(3,-5)$.
(a) Show that if $x, y \in \mathbb{Z}$ satisfy $y^{2}=x^{3}-2$ then x is odd.
(b) Show that if $x, y \in \mathbb{Z}$ satisfy $y^{2}=x^{3}-2$ then $y+\sqrt{-2}$ and $y-\sqrt{-2}$ are relatively prime over $\mathbb{Z}[\sqrt{-2}]$
(c) Write $x^{3}=y^{2}+2=(y+\sqrt{-2})(y-\sqrt{-2})$ and use Exercise sheet 1, Question 4 (a) to write $(y+\sqrt{-2})=(a+b \sqrt{-2})^{3}$ and conclude that only solutions are $(x, y)=(3,5)$ and $(3,-5)$.

Solution:

(a) If x is even then $8 \mid x^{3}$ and hence $y^{2} \equiv 6 \bmod 8$. But the only squares $\bmod 8$ are $0,1,4$. Hence x must be odd.
(b) If $d=a+b \sqrt{-2}$ is a divisor of $(y+\sqrt{-2})$ and $(y-\sqrt{-2})$ then it also divides the difference $2 \sqrt{-2}$. Taking norms and using question 3 (b) shows that $N(d) \mid 8$. But $N(d)$ also divides $N(y+\sqrt{-2})=y^{2}+2=x^{3}$. Since x is odd (part (a)), $N(d)=1$. But then we have $a^{2}+2 b^{2}=1$ which has only the solutions $(a, b)=(\pm 1,0)$.
(c) Suppose $x^{3}=(y+\sqrt{-2})(y-\sqrt{-2})$. Then since $y+\sqrt{-2}$ and $y-\sqrt{-2}$ are relatively prime, using Exercise sheet 1, question 4 (a) we have that for some $a, b \in \mathbb{Z}$

$$
y+\sqrt{-2}=(a+b \sqrt{-2})^{3}=\left(a^{3}-6 a b^{2}\right)+\left(3 a^{2} b-2 b^{3}\right) \sqrt{-2} .
$$

Hence $y=a\left(a^{2}-6 b^{2}\right)$ and $1=b\left(3 a^{2}-2 b^{2}\right)$. Using the second equation we have that $b= \pm 1$. If $b=1$ then $1=\left(3 a^{2}-2 b^{2}\right)=3 a^{2}-2$. Hence $a= \pm 1$. Setting $a= \pm 1$ and $b=1$ in $y=a\left(a^{2}-6 b^{2}\right)$ gives $y= \pm 5$ and $x^{3}=y^{2}+2=27$ and hence $x=3$.
On the other hand if $b=-1$, then $1=b\left(3 a^{2}-2 b^{2}\right)=-\left(3 a^{2}-2\right)$ and we have $3 a^{2}=1$ which clearly has no solution in integers. Hence the only solutions to $y^{2}=x^{3}-2$ are the ones we found when $b=1$, namely $(x, y)=(3, \pm 5)$

