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1. (a) Let f and g be polynomials over a field F . Show that f and g are relatively prime if
and only if f and g have no common root in any extention of F .

(b) If f, g P F rxs are distinct monic irreducible polynomials then show that they have no
common roots in any extention of F .

Solution: (a) (ñ) Assume that f and g are relatively prime. We want to show that f and g
have no common root in any extension of F .

If f and g are relatively prime, then there are polynomials apxq and bpxq such that apxqfpxq`

bpxqgpxq “ 1. If α is a common root of f and g we then have 1 “ apαqfpαq ` bpαqgpαq “ 0
which clearly is a contradiction.

(ð) Conversely, assume that f and g have no common root in any extension of F . We want
to show that f and g are relatively prime.

Suppose d is the greatest common divisor of f and g. Then d divides both f and g. If d ‰ 1,
it must have at least one root α in some extension K of F . Then x ´ α divides d and hence
it divides f and g in K. This means α is a root of both f and g.

Thus, the only possibility is that d “ 1, meaning f and g are relatively prime.

(b) Given that f and g are distinct monic irreducible polynomials in F rxs, we need to show
that they are relatively prime. Let h be a non constant divisor of the polynomials f and g.
Since f and g are irreducible, then up to constants h coincides with f and g. Hence hpxq “

cfpxq and hpxq “ dgpxq for some constants c, d in F . But then fpxq “ c´1dgpxq. Since
f, g are monic f “ g. But this contradicts the assumption that they are distinct polynomials.
Hence h is a constant which means f and g are relatively prime.

Using part (a), they have no common roots in any extension of F .

2. Let Q :“ tα P C |α is algebraic over Qu, the set of all algebraic numbers over Q.

(a) Show that Q is a field.

(b) Show that Q : Q is an infinite extention

Solution: (a) To show that the set of all algebraic numbers over Q is a field, we need to
prove that it satisfies the field axioms: closure under addition, closure under multiplication,
existence of additive and multiplicative inverses, commutativity, associativity, and distribu-
tivity.

Closure under addition and multiplication: Let a, b be any two algebraic numbers in Q. We
need to show that a ` b and ab are algebraic over Q.

Note that if F is a finite extension of Q, and a P F , then a is algebraic over Q.

Let a, b be algebraic over Q. By Exercise 4 we have that

rQpa, bq : Qs ď rQpaq : QsrQpbq : Qs ă 8.
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Hence Qpa, bq is a finite extension of Q, so each element of Qpa, bq is algebraic over Q. In
particular, a ` b, ab P Qpa, bq, so they are algebraic over Q as well.

Existence of additive and multiplicative inverses: For any non-zero algebraic number a in Q,
its additive inverse ´a and multiplicative inverse a´1 exist. We need to show that a´1 is an
algebraic number.

Let f be a monic polynomial over Q satisfying fpaq “ 0. Then we can write

0 “ fpaq “

n
ÿ

k“0

bka
k

“ an
ÿ bk

an
ak

“ an
ÿ

bn´kpa´1
q

´k

“
ÿ

bn´kpa´1
q
n´k

Hence a´1 is a zero of the polynomial
řn

k“0 bn´kX
n´k. We can make this polynomial monic

by dividing by the leading term. Hence a´1 is algebraic over Q.

Commutativity, associativity, and distributivity: These properties are inherited from the field
of rational numbers, Q, since all elements of Q are roots of polynomials with coefficients in
Q.

With all the above properties, Q indeed forms a field.

(b) Let p be any prime number. Consider the polynomial fpXq :“ Xn ´p over the rationals.
By Eisenstein’s criterion f is irreducible over Q. Hence rQr n

?
ps : Qs “ n, but Qr n

?
ps Ď Q

for all n P Zě0. Hence dimQpQq “ 8.

3. Let A “ R
Ş

Q. Show that A is countable, and conclude that there are real numbers which
are transcendental.

Solution:

Claim. The set of polynomials with rational coefficients is countable.

Proof of claim. Since Q is countable, for each n ě 1 we have that Qn is countable as well.

For n ě 1 let Pn be the set of all polynomials with rational coefficients and degree n. For a
rational polynomial

fpXq “ anX
n

` ¨ ¨ ¨ ` a1X ` a0,

we define a function pn : Pn Ñ Qn`1, by

pnpfq :“ pan, . . . , a1, a0q.

This functions is onto, and is clearly one-to-one. Hence it is a bijection. Thus for each n the
set Pn is countable.

We can write the set of all raional polynomials as a countable union
ď

n

Pn,

and since a countable union of countable sets is countable, we obtain our claim.
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Since each algebraic number is a root of a polynomial with rational coefficients (which
are countable), the set of algebraic numbers is countable as well. The real numbers R are
uncountable, but since Q is countable, R

Ş

Q is countable as well. From the cardinality of
the two sets, it follows that there exist real numbers which are not algebraic, i.e. they are
transcendental.

4. Let L : K be an algebraic field extension. Let K1, K2 be two fields with K Ď K1, K2 Ď L,
such that the field extensions K1 : K and K2 : K are finite. The composite of K1 and K2 is
defined as K1K2 :“ KpK1 Y K2q. Show:

(a) rK1K2 : K2 s ď rK1 : K s

(b) rK1K2 : K s ď rK1 : K s ¨ rK2 : K s

(c) If gcdprK1 : K s, rK2 : K sq “ 1, then equality holds in (b).

Remark: If equality holds in (b), K1 and K2 are said to be linearly disjoint over K.

Solution: (a) Let A be a basis of K1 over K. Since K1 “ KpAq, we also have K1K2 “

K2pAq. We know from the lectures that for a P A we have K2paq “ K2ras. Applying this
iteratively to the elements of A yields that K2pAq “ K2rAs. Thus, we see that K1K2 “
␣
ř1 aibi : ai P K1, bi P K2

(

, where
ř1 denotes a finite sum. From this, we observe that A is

a generating system of K1K2 as a K2-vector space. Therefore, rK1K2 : K2 s ď |A| “ rK1 :
K s.

(b) The multiplicativity of field degrees and part (a) imply

rK1K2 : K s “ rK1K2 : K2 s ¨ rK2 : K s ď rK1 : K s ¨ rK2 : K s.

(c) It suffices to show that if gcdprK1 : K s, rK2 : K sq “ 1, then rK1K2 : K s ě rK1 :
K s ¨ rK2 : K s. Since rK1K2 : K s “ rK1K2 : K2 s ¨ rK2 : K s, rK2 : K s divides
rK1K2 : K s. Similarly, rK1 : K s divides rK1K2 : K s. From the coprimality, we deduce
that rK1 : K s ¨ rK2 : K s divides the degree rK1K2 : K s, and thus

rK1K2 : K s ě rK1 : K s ¨ rK2 : K s.
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