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1.

(a) Let f and g be polynomials over a field F. Show that f and ¢ are relatively prime if
and only if f and g have no common root in any extention of F'.

(b) If f,g € F[x] are distinct monic irreducible polynomials then show that they have no
common roots in any extention of F'.

Solution: (a) (=) Assume that f and g are relatively prime. We want to show that f and g
have no common root in any extension of F'.

If f and g are relatively prime, then there are polynomials a(z) and b(x) such that a(z) f () +
b(x)g(x) = 1.If v is a common root of f and g we then have 1 = a(«) f(a) + b(a)g(a) = 0
which clearly is a contradiction.

(<) Conversely, assume that f and g have no common root in any extension of F'. We want
to show that f and g are relatively prime.

Suppose d is the greatest common divisor of f and g. Then d divides both f and ¢g. If d # 1,
it must have at least one root o in some extension K of F'. Then z — « divides d and hence
it divides f and ¢ in K. This means « is a root of both f and g.

Thus, the only possibility is that d = 1, meaning f and g are relatively prime.

(b) Given that f and g are distinct monic irreducible polynomials in F'[x], we need to show
that they are relatively prime. Let i be a non constant divisor of the polynomials f and g.
Since f and g are irreducible, then up to constants h coincides with f and g. Hence h(x) =
cf(z) and h(z) = dg(z) for some constants ¢, d in F. But then f(z) = ¢ 'dg(z). Since
f, g are monic f = g. But this contradicts the assumption that they are distinct polynomials.
Hence £ is a constant which means f and g are relatively prime.

Using part (a), they have no common roots in any extension of F'.

Let Q := {a € C|« is algebraic over Q}, the set of all algebraic numbers over Q.

(a) Show that Q is a field.

(b) Show that Q) : Q is an infinite extention

Solution: (a) To show that the set of all algebraic numbers over QQ is a field, we need to
prove that it satisfies the field axioms: closure under addition, closure under multiplication,
existence of additive and multiplicative inverses, commutativity, associativity, and distribu-
tivity.

Closure under addition and multiplication: Let a, b be any two algebraic numbers in Q. We
need to show that a + b and ab are algebraic over Q.

Note that if F'is a finite extension of (), and a € F, then a is algebraic over Q).

Let a, b be algebraic over (). By Exercise 4 we have that
[Q(a,b) : Q] < [Q(a) : QI[Q(D) : Q] < ©.
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Hence QQ(a, b) is a finite extension of @, so each element of Q(a, b) is algebraic over Q. In
particular, a + b, ab € Q(a, b), so they are algebraic over () as well.

Existence of additive and multiplicative inverses: For any non-zero algebraic number a in Q,
its additive inverse —a and multiplicative inverse a~! exist. We need to show that a~! is an
algebraic number.

Let f be a monic polynomial over Q satisfying f(a) = 0. Then we can write

0= f(a) = Zn: bra® = a"Zb—kak
k=0

= a”Z bp_i(a™1)7"
_ Z bn_k<a—1)n—k

Hence a ™! is a zero of the polynomial >, _, b, X" *. We can make this polynomial monic
by dividing by the leading term. Hence a ! is algebraic over Q.

Commutativity, associativity, and distributivity: These properties are inherited from the field
of rational numbers, QQ, since all elements of Q are roots of polynomials with coefficients in

Q.
With all the above properties, Q indeed forms a field.

(b) Let p be any prime number. Consider the polynomial f(X) := X™ — p over the rationals.
By Eisenstein’s criterion f is irreducible over Q. Hence [Q[{/p] : Q] = n, but Q[ ¢/p] < @

for all n € Z,. Hence dimg(Q) = .

Let A =R ﬂ Q Show that A is countable, and conclude that there are real numbers which
are transcendental.

Solution:
Claim. The set of polynomials with rational coefficients is countable.
Proof of claim. Since Q is countable, for each n > 1 we have that Q" is countable as well.

For n > 1 let P, be the set of all polynomials with rational coefficients and degree n. For a
rational polynomial
f(X)=a, X"+ -+ a; X + ao,

we define a function p, : B, — Q""!, by
p(f) = (an,...,a1,a0).

This functions is onto, and is clearly one-to-one. Hence it is a bijection. Thus for each n the
set P, is countable.

We can write the set of all raional polynomials as a countable union
P
n

and since a countable union of countable sets is countable, we obtain our claim.



Since each algebraic number is a root of a polynomial with rational coefficients (which
are countable), the set of algebraic numbers is countable as well. The real numbers R are
uncountable, but since @ is countable, R [ Q is countable as well. From the cardinality of
the two sets, it follows that there exist real numbers which are not algebraic, i.e. they are
transcendental.

Let L : K be an algebraic field extension. Let K, K5 be two fields with K < Ky, Ky € L,
such that the field extensions K : K and K, : K are finite. The composite of K; and K is
defined as K1 K5 := K(K; U Ks). Show:

(a) [KlKQ:KQ]é[Kl:K]
(b) [KlKQK]é[KlK][KgK]
(c) Ifged(| Ky : K],[Ks: K]) =1, then equality holds in (b).

Remark: If equality holds in (b), K and K, are said to be linearly disjoint over K.

Solution: (a) Let A be a basis of K; over K. Since K; = K(A), we also have K1 Ky =
K3 (A). We know from the lectures that for a € A we have Ky(a) = Ks[a]. Applying this
iteratively to the elements of A yields that K»(A) = K3[A]. Thus, we see that K; Ky =
{Z' a;b; : a; € Ki,b; € KQ}, where Z' denotes a finite sum. From this, we observe that A is
a generating system of K K as a Ks-vector space. Therefore, | K1 K5 : Ky | < |A| = [ K; :
K.

(b) The multiplicativity of field degrees and part (a) imply

[KlKQK]:[KlKQKQ][KQK]g[KlK][KQK]

(c) It suffices to show that if ged([ K7 : K|,[ Ky : K]) = 1,then [K1 Ky : K| > [ K] :
K] : [K2 . K] Since [KlKQ . K] = [K1K2 . KQ] . [K2 . K], [KQ . K] divides
[ KiKy : K. Similarly, [ K : K | divides [ K1 K5 : K |. From the coprimality, we deduce
that [ K : K |- [ Ky : K | divides the degree [ K1 K, : K |, and thus

[KiKy: K2 |[K K] [Ky: K]



