D-MATH		Algebra II	
Prof. Dr. Özlem Imamogl	u		
	Solutions	Exercise	sheet 3

- 1. (a) Let f and g be polynomials over a field F. Show that f and g are relatively prime if and only if f and g have no common root in any extention of F.
 - If $f, g \in F[x]$ are distinct monic irreducible polynomials then show that they have no (b) common roots in any extention of F.

Solution: (a) (\Rightarrow) Assume that f and g are relatively prime. We want to show that f and g have no common root in any extension of F.

If f and g are relatively prime, then there are polynomials a(x) and b(x) such that a(x)f(x) + b(x)b(x)q(x) = 1. If α is a common root of f and q we then have $1 = a(\alpha)f(\alpha) + b(\alpha)q(\alpha) = 0$ which clearly is a contradiction.

 (\Leftarrow) Conversely, assume that f and q have no common root in any extension of F. We want to show that f and q are relatively prime.

Suppose d is the greatest common divisor of f and g. Then d divides both f and g. If $d \neq 1$, it must have at least one root α in some extension K of F. Then $x - \alpha$ divides d and hence it divides f and g in K. This means α is a root of both f and g.

Thus, the only possibility is that d = 1, meaning f and g are relatively prime.

(b) Given that f and q are distinct monic irreducible polynomials in F[x], we need to show that they are relatively prime. Let h be a non constant divisor of the polynomials f and g. Since f and q are irreducible, then up to constants h coincides with f and q. Hence h(x) =cf(x) and h(x) = dg(x) for some constants c, d in F. But then $f(x) = c^{-1}dg(x)$. Since f, g are monic f = g. But this contradicts the assumption that they are distinct polynomials. Hence h is a constant which means f and q are relatively prime.

Using part (a), they have no common roots in any extension of F.

- **2**. Let $\overline{\mathbb{Q}} := \{ \alpha \in \mathbb{C} \mid \alpha \text{ is algebraic over } \mathbb{Q} \}$, the set of all algebraic numbers over \mathbb{Q} .
 - (a) Show that $\overline{\mathbb{Q}}$ is a field.
 - Show that $\overline{\mathbb{Q}} : \mathbb{Q}$ is an infinite extention (b)

Solution: (a) To show that the set of all algebraic numbers over \mathbb{Q} is a field, we need to prove that it satisfies the field axioms: closure under addition, closure under multiplication, existence of additive and multiplicative inverses, commutativity, associativity, and distributivity.

Closure under addition and multiplication: Let a, b be any two algebraic numbers in $\overline{\mathbb{Q}}$. We need to show that a + b and ab are algebraic over \mathbb{Q} .

Note that if F is a finite extension of \mathbb{Q} , and $a \in F$, then a is algebraic over \mathbb{Q} .

Let a, b be algebraic over \mathbb{Q} . By Exercise 4 we have that

$$[\mathbb{Q}(a,b):\mathbb{Q}] \leq [\mathbb{Q}(a):\mathbb{Q}][\mathbb{Q}(b):\mathbb{Q}] < \infty.$$

Hence $\mathbb{Q}(a, b)$ is a finite extension of \mathbb{Q} , so each element of $\mathbb{Q}(a, b)$ is algebraic over \mathbb{Q} . In particular, $a + b, ab \in \mathbb{Q}(a, b)$, so they are algebraic over \mathbb{Q} as well.

Existence of additive and multiplicative inverses: For any non-zero algebraic number a in $\overline{\mathbb{Q}}$, its additive inverse -a and multiplicative inverse a^{-1} exist. We need to show that a^{-1} is an algebraic number.

Let f be a monic polynomial over \mathbb{Q} satisfying f(a) = 0. Then we can write

$$0 = f(a) = \sum_{k=0}^{n} b_k a^k = a^n \sum \frac{b_k}{a^n} a^k$$

= $a^n \sum b_{n-k} (a^{-1})^{-k}$
= $\sum b_{n-k} (a^{-1})^{n-k}$

Hence a^{-1} is a zero of the polynomial $\sum_{k=0}^{n} b_{n-k} X^{n-k}$. We can make this polynomial monic by dividing by the leading term. Hence a^{-1} is algebraic over \mathbb{Q} .

Commutativity, associativity, and distributivity: These properties are inherited from the field of rational numbers, \mathbb{Q} , since all elements of $\overline{\mathbb{Q}}$ are roots of polynomials with coefficients in \mathbb{Q} .

With all the above properties, $\overline{\mathbb{Q}}$ indeed forms a field.

(b) Let p be any prime number. Consider the polynomial $f(X) := X^n - p$ over the rationals. By Eisenstein's criterion f is irreducible over \mathbb{Q} . Hence $[\mathbb{Q}[\sqrt[n]{p}] : \mathbb{Q}] = n$, but $\mathbb{Q}[\sqrt[n]{p}] \subseteq \overline{Q}$ for all $n \in \mathbb{Z}_{\geq 0}$. Hence $\dim_{\mathbb{Q}}(\overline{\mathbb{Q}}) = \infty$.

3. Let $\mathbb{A} = \mathbb{R} \cap \overline{\mathbb{Q}}$. Show that \mathbb{A} is countable, and conclude that there are real numbers which are transcendental.

Solution:

Claim. The set of polynomials with rational coefficients is countable.

Proof of claim. Since \mathbb{Q} is countable, for each $n \ge 1$ we have that \mathbb{Q}^n is countable as well.

For $n \ge 1$ let P_n be the set of all polynomials with rational coefficients and degree n. For a rational polynomial

$$f(X) = a_n X^n + \dots + a_1 X + a_0,$$

we define a function $p_n: P_n \to \mathbb{Q}^{n+1}$, by

$$p_n(f) := (a_n, \ldots, a_1, a_0).$$

This functions is onto, and is clearly one-to-one. Hence it is a bijection. Thus for each n the set P_n is countable.

We can write the set of all raional polynomials as a countable union

$$\bigcup_n P_n,$$

and since a countable union of countable sets is countable, we obtain our claim.

Since each algebraic number is a root of a polynomial with rational coefficients (which are countable), the set of algebraic numbers is countable as well. The real numbers \mathbb{R} are uncountable, but since $\overline{\mathbb{Q}}$ is countable, $\mathbb{R} \cap \overline{\mathbb{Q}}$ is countable as well. From the cardinality of the two sets, it follows that there exist real numbers which are not algebraic, i.e. they are transcendental.

- 4. Let L : K be an algebraic field extension. Let K_1, K_2 be two fields with $K \subseteq K_1, K_2 \subseteq L$, such that the field extensions $K_1 : K$ and $K_2 : K$ are finite. The composite of K_1 and K_2 is defined as $K_1K_2 := K(K_1 \cup K_2)$. Show:
 - (a) $[K_1K_2:K_2] \leq [K_1:K]$
 - (b) $[K_1K_2:K] \leq [K_1:K] \cdot [K_2:K]$
 - (c) If $gcd([K_1:K], [K_2:K]) = 1$, then equality holds in (b).

Remark: If equality holds in (b), K_1 and K_2 are said to be *linearly disjoint* over K.

Solution: (a) Let A be a basis of K_1 over K. Since $K_1 = K(A)$, we also have $K_1K_2 = K_2(A)$. We know from the lectures that for $a \in A$ we have $K_2(a) = K_2[a]$. Applying this iteratively to the elements of A yields that $K_2(A) = K_2[A]$. Thus, we see that $K_1K_2 = \{\sum' a_i b_i : a_i \in K_1, b_i \in K_2\}$, where \sum' denotes a finite sum. From this, we observe that A is a generating system of K_1K_2 as a K_2 -vector space. Therefore, $[K_1K_2 : K_2] \leq |A| = [K_1 : K]$.

(b) The multiplicativity of field degrees and part (a) imply

$$[K_1K_2:K] = [K_1K_2:K_2] \cdot [K_2:K] \leq [K_1:K] \cdot [K_2:K].$$

(c) It suffices to show that if $gcd([K_1 : K], [K_2 : K]) = 1$, then $[K_1K_2 : K] \ge [K_1 : K] \cdot [K_2 : K]$. Since $[K_1K_2 : K] = [K_1K_2 : K_2] \cdot [K_2 : K]$, $[K_2 : K]$ divides $[K_1K_2 : K]$. Similarly, $[K_1 : K]$ divides $[K_1K_2 : K]$. From the coprimality, we deduce that $[K_1 : K] \cdot [K_2 : K]$ divides the degree $[K_1K_2 : K]$, and thus

$$[K_1K_2:K] \ge [K_1:K] \cdot [K_2:K].$$