Solutions Exercise sheet 3

1. (a) Let f and g be polynomials over a field F. Show that f and g are relatively prime if and only if f and g have no common root in any extention of F.
(b) If $f, g \in F[x]$ are distinct monic irreducible polynomials then show that they have no common roots in any extention of F.
Solution: (a) $(\Rightarrow$) Assume that f and g are relatively prime. We want to show that f and g have no common root in any extension of F.
If f and g are relatively prime, then there are polynomials $a(x)$ and $b(x)$ such that $a(x) f(x)+$ $b(x) g(x)=1$. If α is a common root of f and g we then have $1=a(\alpha) f(\alpha)+b(\alpha) g(\alpha)=0$ which clearly is a contradiction.
(\Leftarrow) Conversely, assume that f and g have no common root in any extension of F. We want to show that f and g are relatively prime.

Suppose d is the greatest common divisor of f and g. Then d divides both f and g. If $d \neq 1$, it must have at least one root α in some extension K of F. Then $x-\alpha$ divides d and hence it divides f and g in K. This means α is a root of both f and g.
Thus, the only possibility is that $d=1$, meaning f and g are relatively prime.
(b) Given that f and g are distinct monic irreducible polynomials in $F[x]$, we need to show that they are relatively prime. Let h be a non constant divisor of the polynomials f and g. Since f and g are irreducible, then up to constants h coincides with f and g. Hence $h(x)=$ $c f(x)$ and $h(x)=d g(x)$ for some constants c, d in F. But then $f(x)=c^{-1} d g(x)$. Since f, g are monic $f=g$. But this contradicts the assumption that they are distinct polynomials. Hence h is a constant which means f and g are relatively prime.
Using part (a), they have no common roots in any extension of F.
2. Let $\overline{\mathbb{Q}}:=\{\alpha \in \mathbb{C} \mid \alpha$ is algebraic over $\mathbb{Q}\}$, the set of all algebraic numbers over \mathbb{Q}.
(a) Show that $\overline{\mathrm{Q}}$ is a field.
(b) Show that $\overline{\mathrm{Q}}: \mathrm{Q}$ is an infinite extention

Solution: (a) To show that the set of all algebraic numbers over \mathbb{Q} is a field, we need to prove that it satisfies the field axioms: closure under addition, closure under multiplication, existence of additive and multiplicative inverses, commutativity, associativity, and distributivity.
Closure under addition and multiplication: Let a, b be any two algebraic numbers in $\overline{\mathbb{Q}}$. We need to show that $a+b$ and $a b$ are algebraic over \mathbb{Q}.
Note that if F is a finite extension of \mathbb{Q}, and $a \in F$, then a is algebraic over \mathbb{Q}.
Let a, b be algebraic over Q. By Exercise 4 we have that

$$
[\mathbb{Q}(a, b): \mathbb{Q}] \leqslant[\mathbb{Q}(a): \mathbb{Q}][\mathbb{Q}(b): \mathbb{Q}]<\infty .
$$

Hence $\mathbb{Q}(a, b)$ is a finite extension of \mathbb{Q}, so each element of $\mathbb{Q}(a, b)$ is algebraic over \mathbb{Q}. In particular, $a+b, a b \in \mathbb{Q}(a, b)$, so they are algebraic over \mathbb{Q} as well.
Existence of additive and multiplicative inverses: For any non-zero algebraic number a in $\overline{\mathbb{Q}}$, its additive inverse $-a$ and multiplicative inverse a^{-1} exist. We need to show that a^{-1} is an algebraic number.
Let f be a monic polynomial over \mathbb{Q} satisfying $f(a)=0$. Then we can write

$$
\begin{aligned}
0=f(a)=\sum_{k=0}^{n} b_{k} a^{k} & =a^{n} \sum \frac{b_{k}}{a^{n}} a^{k} \\
& =a^{n} \sum b_{n-k}\left(a^{-1}\right)^{-k} \\
& =\sum b_{n-k}\left(a^{-1}\right)^{n-k}
\end{aligned}
$$

Hence a^{-1} is a zero of the polynomial $\sum_{k=0}^{n} b_{n-k} X^{n-k}$. We can make this polynomial monic by dividing by the leading term. Hence a^{-1} is algebraic over \mathbb{Q}.

Commutativity, associativity, and distributivity: These properties are inherited from the field of rational numbers, \mathbb{Q}, since all elements of $\overline{\mathbb{Q}}$ are roots of polynomials with coefficients in \mathbb{Q}.
With all the above properties, $\overline{\mathbb{Q}}$ indeed forms a field.
(b) Let p be any prime number. Consider the polynomial $f(X):=X^{n}-p$ over the rationals. By Eisenstein's criterion f is irreducible over \mathbb{Q}. Hence $[\mathbb{Q}[\sqrt[n]{p}]: \mathbb{Q}]=n$, but $\mathbb{Q}[\sqrt[n]{p}] \subseteq \bar{Q}$ for all $n \in \mathbb{Z}_{\geqslant 0}$. Hence $\operatorname{dim}_{\mathbb{Q}}(\overline{\mathbb{Q}})=\infty$.
3. Let $\mathbb{A}=\mathbb{R} \bigcap \overline{\mathbb{Q}}$. Show that \mathbb{A} is countable, and conclude that there are real numbers which are transcendental.

Solution:

Claim. The set of polynomials with rational coefficients is countable.
Proof of claim. Since \mathbb{Q} is countable, for each $n \geqslant 1$ we have that \mathbb{Q}^{n} is countable as well.
For $n \geqslant 1$ let P_{n} be the set of all polynomials with rational coefficients and degree n. For a rational polynomial

$$
f(X)=a_{n} X^{n}+\cdots+a_{1} X+a_{0}
$$

we define a function $p_{n}: P_{n} \rightarrow \mathbb{Q}^{n+1}$, by

$$
p_{n}(f):=\left(a_{n}, \ldots, a_{1}, a_{0}\right) .
$$

This functions is onto, and is clearly one-to-one. Hence it is a bijection. Thus for each n the set P_{n} is countable.
We can write the set of all raional polynomials as a countable union

$$
\bigcup_{n} P_{n},
$$

and since a countable union of countable sets is countable, we obtain our claim.

Since each algebraic number is a root of a polynomial with rational coefficients (which are countable), the set of algebraic numbers is countable as well. The real numbers \mathbb{R} are uncountable, but since $\overline{\mathrm{Q}}$ is countable, $\mathbb{R} \bigcap \overline{\mathrm{Q}}$ is countable as well. From the cardinality of the two sets, it follows that there exist real numbers which are not algebraic, i.e. they are transcendental.
4. Let $L: K$ be an algebraic field extension. Let K_{1}, K_{2} be two fields with $K \subseteq K_{1}, K_{2} \subseteq L$, such that the field extensions $K_{1}: K$ and $K_{2}: K$ are finite. The composite of K_{1} and K_{2} is defined as $K_{1} K_{2}:=K\left(K_{1} \cup K_{2}\right)$. Show:
(a) $\left[K_{1} K_{2}: K_{2}\right] \leqslant\left[K_{1}: K\right]$
(b) $\left[K_{1} K_{2}: K\right] \leqslant\left[K_{1}: K\right] \cdot\left[K_{2}: K\right]$
(c) If $\operatorname{gcd}\left(\left[K_{1}: K\right],\left[K_{2}: K\right]\right)=1$, then equality holds in (b).

Remark: If equality holds in (b), K_{1} and K_{2} are said to be linearly disjoint over K.
Solution: (a) Let A be a basis of K_{1} over K. Since $K_{1}=K(A)$, we also have $K_{1} K_{2}=$ $K_{2}(A)$. We know from the lectures that for $a \in A$ we have $K_{2}(a)=K_{2}[a]$. Applying this iteratively to the elements of A yields that $K_{2}(A)=K_{2}[A]$. Thus, we see that $K_{1} K_{2}=$ $\left\{\sum^{\prime} a_{i} b_{i}: a_{i} \in K_{1}, b_{i} \in K_{2}\right\}$, where \sum^{\prime} denotes a finite sum. From this, we observe that A is a generating system of $K_{1} K_{2}$ as a K_{2}-vector space. Therefore, $\left[K_{1} K_{2}: K_{2}\right] \leqslant|A|=\left[K_{1}\right.$: $K]$.
(b) The multiplicativity of field degrees and part (a) imply

$$
\left[K_{1} K_{2}: K\right]=\left[K_{1} K_{2}: K_{2}\right] \cdot\left[K_{2}: K\right] \leqslant\left[K_{1}: K\right] \cdot\left[K_{2}: K\right] .
$$

(c) It suffices to show that if $\operatorname{gcd}\left(\left[K_{1}: K\right],\left[K_{2}: K\right]\right)=1$, then $\left[K_{1} K_{2}: K\right] \geqslant\left[K_{1}\right.$: $K] \cdot\left[K_{2}: K\right]$. Since $\left[K_{1} K_{2}: K\right]=\left[K_{1} K_{2}: K_{2}\right] \cdot\left[K_{2}: K\right],\left[K_{2}: K\right]$ divides [$K_{1} K_{2}: K$]. Similarly, [$K_{1}: K$] divides [$K_{1} K_{2}: K$]. From the coprimality, we deduce that $\left[K_{1}: K\right] \cdot\left[K_{2}: K\right.$] divides the degree [$K_{1} K_{2}: K$], and thus

$$
\left[K_{1} K_{2}: K\right] \geqslant\left[K_{1}: K\right] \cdot\left[K_{2}: K\right] .
$$

