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Solutions Exercise sheet 4

1. Let F Ă K Ă L be fields. Show that L : F is an algebraic extention if and only if L : K and
K : F are algebraic.

Solution: (ð) Assume L : K and K : F are algebraic. Let l P L. Since L : K is algebraic, l
is a root of a non-zero polynomial over K. We will show that it is also the root of a non-zero
polynomial with coefficients in F .

Let
fpxq :“ anx

n
` ¨ ¨ ¨ ` a0

be a polynomial in Krxs with root l. Since we also assume that the extention K : F is
algebraic, the degree rF pa0, . . . , anq : F s is finite. Then also the degree rF pa0, . . . , an, lq :
F s is finite.

(ñ) Assume that L : F is an algebraic extention. Then since K Ă L, we have that K : F is
algebraic as well.

If l P L, then since L : F is algebraic, there exists a non-zero polynomial f with coefficients
in F such that fplq “ 0. Since F Ă K, then f P Krxs, so that l is algebraic over K and thus
L : K is algebraic as well.

2. Let L : K be an algebraic field extention. Prove that every subring R of L which contains K
is a field. Give a counter example in the case that the extention is not algebraic.

Solution: Let R be a subring as above. We need to prove that each element of R has a
multiplicative inverse.

Let 0 ‰ r P R. Then also r P L and since L : K is algebraic, there exists a minimal
polynomial fpxq :“ xn ` an´1x

n´1 ` ¨ ¨ ¨ ` a1x ` a0, with ai P K and fprq “ 0. By
minimality, the coefficient a0 has to be non-zero, and since K is a field, it has an inverse a´1

0

in K. Then
r ¨ p´a´1

0 q ¨ prn´1
` an´1r

n´2
` ¨ ¨ ¨ ` a1q “ 1,

and since r, ai P R, for each i, r is invertible in R. Thus R is a field.

3. (a) Let F be a field and a P Q that generates a field extention of F of degree 7. Prove that
a2 generated the same extention.

(b) Prove that part 3.a holds for 7 replaced by any odd integer.

Solution: (a) we have that a generates F paq with rF paq : F s “ 7. Note that a2 P F paq,
so that F pa2q Ă F paq. Because of the multiplicativity of the field degree, we have that
rF paq : F pa2qs must divide rF paq : F s. Since a R F , we have F pa2q “ F paq.

(b) If rF paq : F pa2qs divides an odd integer, then it must be odd itself. Note that the minimal
polynomial of a over F pa2q also divides the polynomial x2 ´ a. Hence the degree is an odd
integer less or equal degpx2 ´ aq “ 2, and we obtain F pa2q “ F paq.
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4. Let p and q are two distinct primes. Prove that Qp
?
pq and Qp

?
qq are isomorphic as vector

spaces over Q but not as fields.

Solution: The minimal polynomials of
?
p and

?
q over Q are x2 ´ p and x2 ´ q respectfully.

Both have degree two, so the elements
?
p and

?
q are algebraic over Q. Thus Qp

?
pq and

Qp
?
qq are both Q-vector spaces of dimension 2 and thus isomorphic.

Claim. Prove that Qp
?
pq and Qp

?
qq are not isomorphic as fields.

Assume that there is a field isomorphism

φ : Qp
?
pq Ñ Qp

?
qq

Since φ is a homomorphism, we have φp1q “ 1. Then we have

φp
?
pq

2
“ φp

?
p2q “ φppq “ p ¨ φp1q “ p.

That means, that there exists x P Qp
?
qq with x2 “ p. We can write x “ a ` b

?
q for some

a, b P Q, which translates to
a2 ` qb2 ` 2ab

?
q “ p.

If a “ 0, we would have to solve qb2 “ p for b P Q, which is not possible for prime numbers
p ‰ q. If b “ 0 then we would have to solve a2 “ p in Q, which again is not possible. Hence
we obtain our claim by contradiction.

5. Let x “
?
2 `

3
?
3.

(a) Prove that Qpxq “ Qp
?
2, 3

?
3q. [Hint: Find the minimal polynomial of x ´

?
2 and

expand]

(b) Compute the minimal polynomial of x over Qp
?
2q. [Hint: rQpxq : Qp

?
2qs “?]

(c) Compute the minimal polynomial of x over Q.

Solution:

(a) Clearly, Qpxq Ď Qp
?
2, 3

?
3q. For the other inclusion, it is enough to prove that

?
2 P

Qpxq, since this also implies that 3
?
3 “ x ´

?
2 P Qpxq. This can be done by trying to

solve Point (2): from px ´
?
2q3 “ 3 we deduce x3 ` 6x ´ 3 “

?
2p3x2 ` 2q, so that

?
2 “

x3 ` 6x ´ 3

3x2 ` 2
P Qpxq.

(b) From the previous point, we have that x satisfies the polynomial

QpXq “ X3
´ 3

?
2X2

` 6X ´ 2
?
2 ´ 3 P Qp

?
2qrXs.

To prove that this is the minimal polynomial, it is enough to prove that Qpxq “

Qp
?
2qp

3
?
3q is a degree-3 extension of Qp

?
2q, which is equivalent to saying that 3

?
3

has degree 3 over Qp
?
2q. To prove this last equivalent statement, notice that 3

?
3 is

a root of the polynomial f “ X3 ´ 3 P Qp
?
2qrXs, which can be easily checked to

be irreducible. Indeed degpfq “ 3, so that it is enough to check that f has no root in
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Qp
?
2q. For every element a ` b

?
2 P Qp

?
2q, with a, b P Q, we have (as 1 and

?
2 are

linear independent over Q):

pa ` b
?
2q

3
“ 3 ðñ

"

a3 ` 6ab2 “ 3
3a2b ` 2b3 “ 0.

The second equation holds for b “ 0 or 3a2 ` 2b2 “ 0, which both give b “ 0, so that
a3 “ 3, impossible in Q. Hence rQpxq : Qs “ 3 and x has minimal polynomial Q over
Qp

?
2q.

(c) We have that rQp
?
2q : Qs “ 2, so that from what we found in the previous point we

get
rQpxq : Qs “ rQpxq : Qp

?
2qsrQp

?
2q : Qs “ 6.

Then the minimal polynomial of x over Q has degree 6.
Now, continuing the computations from Point (1) we get

x6
` 36x2

` 9 ` 12x4
´ 6x3

´ 36x “ 2p9x4
` 12x2

` 4q,

so that x is a root of P pXq “ X6 ´ 6X4 ´ 6X3 ` 12X2 ´ 36X ` 1, which by our
previous discussion is the minimal polynomial of x over Q.
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