1. Let $F \subset K \subset L$ be fields. Show that L : F is an algebraic extention if and only if L : K and K: F are algebraic.

Solution: (\Leftarrow) Assume L : K and K : F are algebraic. Let $l \in L$. Since L : K is algebraic, lis a root of a non-zero polynomial over K. We will show that it is also the root of a non-zero polynomial with coefficients in F.

Let

$$f(x) := a_n x^n + \dots + a_0$$

be a polynomial in K[x] with root l. Since we also assume that the extention K : F is algebraic, the degree $[F(a_0, \ldots, a_n) : F]$ is finite. Then also the degree $[F(a_0, \ldots, a_n, l) :$ F] is finite.

 (\Rightarrow) Assume that L: F is an algebraic extention. Then since $K \subset L$, we have that K: F is algebraic as well.

If $l \in L$, then since L : F is algebraic, there exists a non-zero polynomial f with coefficients in F such that f(l) = 0. Since $F \subset K$, then $f \in K[x]$, so that l is algebraic over K and thus L: K is algebraic as well.

2. Let L: K be an algebraic field extention. Prove that every subring R of L which contains K is a field. Give a counter example in the case that the extention is not algebraic.

Solution: Let R be a subring as above. We need to prove that each element of R has a multiplicative inverse.

Let $0 \neq r \in R$. Then also $r \in L$ and since L : K is algebraic, there exists a minimal polynomial $f(x) := x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$, with $a_i \in K$ and f(r) = 0. By minimality, the coefficient a_0 has to be non-zero, and since K is a field, it has an inverse a_0^{-1} in K. Then

 $r \cdot (-a_0^{-1}) \cdot (r^{n-1} + a_{n-1}r^{n-2} + \dots + a_1) = 1,$

and since $r, a_i \in R$, for each i, r is invertible in R. Thus R is a field.

- Let F be a field and $a \in \overline{\mathbb{Q}}$ that generates a field extention of F of degree 7. Prove that 3. (a) a^2 generated the same extention.
 - Prove that part **3**.a holds for 7 replaced by any odd integer. (b)

Solution: (a) we have that a generates F(a) with [F(a) : F] = 7. Note that $a^2 \in F(a)$, so that $F(a^2) \subset F(a)$. Because of the multiplicativity of the field degree, we have that $[F(a): F(a^2)]$ must divide [F(a): F]. Since $a \notin F$, we have $F(a^2) = F(a)$.

(b) If $[F(a) : F(a^2)]$ divides an odd integer, then it must be odd itself. Note that the minimal polynomial of a over $F(a^2)$ also divides the polynomial $x^2 - a$. Hence the degree is an odd integer less or equal $deg(x^2 - a) = 2$, and we obtain $F(a^2) = F(a)$.

4. Let p and q are two distinct primes. Prove that $\mathbb{Q}(\sqrt{p})$ and $\mathbb{Q}(\sqrt{q})$ are isomorphic as vector spaces over \mathbb{Q} but not as fields.

Solution: The minimal polynomials of \sqrt{p} and \sqrt{q} over \mathbb{Q} are $x^2 - p$ and $x^2 - q$ respectfully. Both have degree two, so the elements \sqrt{p} and \sqrt{q} are algebraic over \mathbb{Q} . Thus $\mathbb{Q}(\sqrt{p})$ and $\mathbb{Q}(\sqrt{q})$ are both \mathbb{Q} -vector spaces of dimension 2 and thus isomorphic.

Claim. Prove that $\mathbb{Q}(\sqrt{p})$ and $\mathbb{Q}(\sqrt{q})$ are not isomorphic as fields.

Assume that there is a field isomorphism

$$\varphi: \mathbb{Q}(\sqrt{p}) \to \mathbb{Q}(\sqrt{q})$$

Since φ is a homomorphism, we have $\varphi(1) = 1$. Then we have

$$\varphi(\sqrt{p})^2 = \varphi(\sqrt{p}^2) = \varphi(p) = p \cdot \varphi(1) = p$$

That means, that there exists $x \in \mathbb{Q}(\sqrt{q})$ with $x^2 = p$. We can write $x = a + b\sqrt{q}$ for some $a, b \in \mathbb{Q}$, which translates to

$$a^2 + qb^2 + 2ab\sqrt{q} = p.$$

If a = 0, we would have to solve $qb^2 = p$ for $b \in \mathbb{Q}$, which is not possible for prime numbers $p \neq q$. If b = 0 then we would have to solve $a^2 = p$ in \mathbb{Q} , which again is not possible. Hence we obtain our claim by contradiction.

- 5. Let $x = \sqrt{2} + \sqrt[3]{3}$.
 - (a) Prove that $\mathbb{Q}(x) = \mathbb{Q}(\sqrt{2}, \sqrt[3]{3})$. [*Hint:* Find the minimal polynomial of $x \sqrt{2}$ and expand]
 - (b) Compute the minimal polynomial of x over $\mathbb{Q}(\sqrt{2})$. [*Hint*: $[\mathbb{Q}(x) : \mathbb{Q}(\sqrt{2})] = ?$]
 - (c) Compute the minimal polynomial of x over \mathbb{Q} .

Solution:

(a) Clearly, $\mathbb{Q}(x) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt[3]{3})$. For the other inclusion, it is enough to prove that $\sqrt{2} \in \mathbb{Q}(x)$, since this also implies that $\sqrt[3]{3} = x - \sqrt{2} \in \mathbb{Q}(x)$. This can be done by trying to solve Point (2): from $(x - \sqrt{2})^3 = 3$ we deduce $x^3 + 6x - 3 = \sqrt{2}(3x^2 + 2)$, so that

$$\sqrt{2} = \frac{x^3 + 6x - 3}{3x^2 + 2} \in \mathbb{Q}(x).$$

(b) From the previous point, we have that x satisfies the polynomial

$$Q(X) = X^3 - 3\sqrt{2}X^2 + 6X - 2\sqrt{2} - 3 \in \mathbb{Q}(\sqrt{2})[X].$$

To prove that this is the minimal polynomial, it is enough to prove that $\mathbb{Q}(x) = \mathbb{Q}(\sqrt{2})(\sqrt[3]{3})$ is a degree-3 extension of $\mathbb{Q}(\sqrt{2})$, which is equivalent to saying that $\sqrt[3]{3}$ has degree 3 over $\mathbb{Q}(\sqrt{2})$. To prove this last equivalent statement, notice that $\sqrt[3]{3}$ is a root of the polynomial $f = X^3 - 3 \in \mathbb{Q}(\sqrt{2})[X]$, which can be easily checked to be irreducible. Indeed deg(f) = 3, so that it is enough to check that f has no root in

 $\mathbb{Q}(\sqrt{2})$. For every element $a + b\sqrt{2} \in \mathbb{Q}(\sqrt{2})$, with $a, b \in \mathbb{Q}$, we have (as 1 and $\sqrt{2}$ are linear independent over \mathbb{Q}):

$$(a + b\sqrt{2})^3 = 3 \iff \begin{cases} a^3 + 6ab^2 = 3\\ 3a^2b + 2b^3 = 0 \end{cases}$$

The second equation holds for b = 0 or $3a^2 + 2b^2 = 0$, which both give b = 0, so that $a^3 = 3$, impossible in \mathbb{Q} . Hence $[\mathbb{Q}(x) : \mathbb{Q}] = 3$ and x has minimal polynomial Q over $\mathbb{Q}(\sqrt{2})$.

(c) We have that $[\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 2$, so that from what we found in the previous point we get

 $[\mathbb{Q}(x):\mathbb{Q}] = [\mathbb{Q}(x):\mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2}):\mathbb{Q}] = 6.$

Then the minimal polynomial of x over \mathbb{Q} has degree 6. Now, continuing the computations from Point (1) we get

$$x^{6} + 36x^{2} + 9 + 12x^{4} - 6x^{3} - 36x = 2(9x^{4} + 12x^{2} + 4),$$

so that x is a root of $P(X) = X^6 - 6X^4 - 6X^3 + 12X^2 - 36X + 1$, which by our previous discussion is the minimal polynomial of x over \mathbb{Q} .