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Solutions Exercise sheet 4

1. Let F'c K c L be fields. Show that L : F'is an algebraic extention if and only if L : K and
K : F' are algebraic.

Solution: (<) Assume L : K and K : F' are algebraic. Let [ € L. Since L : K is algebraic, [
is a root of a non-zero polynomial over /. We will show that it is also the root of a non-zero
polynomial with coefficients in F'.

Let
flx) :=ax" +---+ap

be a polynomial in K[z] with root [. Since we also assume that the extention K : F'is
algebraic, the degree [F'(aq, .. .,a,) : F] is finite. Then also the degree [F'(aq, .. ., ay,,1) :
F1] is finite.

(=) Assume that L : F'is an algebraic extention. Then since K < L, we have that K : F'is
algebraic as well.

If [ € L, then since L : F'is algebraic, there exists a non-zero polynomial f with coefficients
in F such that f(I) = 0. Since F' c K, then f € K[z], so that [ is algebraic over K and thus
L : K is algebraic as well.

2. Let L : K be an algebraic field extention. Prove that every subring R of L which contains K
is a field. Give a counter example in the case that the extention is not algebraic.

Solution: Let R be a subring as above. We need to prove that each element of R has a
multiplicative inverse.

Let 0 # r € R. Then also » € L and since L : K is algebraic, there exists a minimal
polynomial f(z) := 2™ + a, 12" ' + -+ + a;x + ag, with a; € K and f(r) = 0. By
minimality, the coefficient a, has to be non-zero, and since K is a field, it has an inverse a, 1

in K. Then
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re(—agt) (" a4 4 ag) = 1,

and since 7, a; € R, for each ¢, r is invertible in R. Thus R is a field.

3. (a) Let Fbeafield and a € Q that generates a field extention of F of degree 7. Prove that
a® generated the same extention.

(b) Prove that part 3.a holds for 7 replaced by any odd integer.

Solution: (a) we have that a generates F'(a) with [F(a) : F] = 7. Note that a®> € F(a),
so that F'(a*?) = F(a). Because of the multiplicativity of the field degree, we have that
[F(a) : F(a?)] must divide [F(a) : F]. Since a ¢ F', we have F'(a?) = F(a).

(b) If [F(a) : F(a?)] divides an odd integer, then it must be odd itself. Note that the minimal
polynomial of a over F'(a?) also divides the polynomial 2> — a. Hence the degree is an odd
integer less or equal deg(z? — a) = 2, and we obtain F'(a?) = F(a).
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4. Let p and ¢ are two distinct primes. Prove that Q(,/p) and Q(,/q) are isomorphic as vector
spaces over () but not as fields.

Solution: The minimal polynomials of /p and ,/q over Q) are 2? — p and 22 — ¢ respectfully.
Both have degree two, so the elements /p and ,/q are algebraic over Q. Thus Q(,/p) and
Q(4/q) are both Q-vector spaces of dimension 2 and thus isomorphic.

Claim. Prove that Q(,/p) and Q(,/q) are not isomorphic as fields.

Assume that there is a field isomorphism

v Qvp) = Q(VY)

Since  is a homomorphism, we have ¢(1) = 1. Then we have

p(vp)? = o(vp°) = ¢(p) =p- (1) = p.

That means, that there exists « € Q(,/q) with z* = p. We can write z = a + b,/q for some
a, b € ), which translates to
a® + qb* + 2aby/q = p.

If @ = 0, we would have to solve gh?> = p for b € Q, which is not possible for prime numbers
p # q.If b = 0 then we would have to solve a® = p in ), which again is not possible. Hence
we obtain our claim by contradiction.

5 Letx =+/2+ /3.

(a) Prove that Q(z) = Q(+/2,/3). [Hint: Find the minimal polynomial of 2 — /2 and
expand]
(b) Compute the minimal polynomial of = over Q(v/2). [Hint: [Q(z) : Q(v/2)] =?]

(¢) Compute the minimal polynomial of x over Q).
Solution:

(a) Clearly, Q(z) < Q(+/2,¥/3). For the other inclusion, it is enough to prove that /2 €
Q(x), since this also implies that /3 = 2 — v/2 € Q(x). This can be done by trying to
solve Point (2): from (z — v/2)® = 3 we deduce 2° + 62 — 3 = v/2(32% + 2), so that

ﬁ_a:3+6:c—3

312 4+ 2 € Q(x).

(b) From the previous point, we have that x satisfies the polynomial
Q(X) = X® —3v2X?% + 6X — 22 — 3 € Q(V2)[X].

To prove that this is the minimal polynomial, it is enough to prove that Q(z) =
Q(+/2)(¥/3) is a degree-3 extension of Q(+/2), which is equivalent to saying that /3
has degree 3 over Q(ﬂ) To prove this last equivalent statement, notice that /3 is
a root of the polynomial f = X* — 3 € Q(+/2)[X], which can be easily checked to
be irreducible. Indeed deg(f) = 3, so that it is enough to check that f has no root in



(©)

Q(+/2). For every element a + bv/2 € Q(+/2), with a, b € Q, we have (as 1 and /2 are
linear independent over Q):

a® + 6ab®> = 3

3 _
(a+bv2)’ =3 — {3a2b+2b3=o.

The second equation holds for b = 0 or 3a? + 2b% = 0, which both give b = 0, so that
a® = 3, impossible in Q. Hence [Q(z) : Q] = 3 and z has minimal polynomial ) over
Q(vV?2).

We have that [Q(+/2) : Q] = 2, so that from what we found in the previous point we
get

[Q(x) - Q] = [Q() : Q(V2)][Q(V2) : Q] = 6.
Then the minimal polynomial of = over () has degree 6.
Now, continuing the computations from Point (1) we get

2% 4 362% + 9 + 122" — 62° — 362 = 2(92" + 1227 + 4),

so that x is a root of P(X) = X% — 6X* — 6X3 + 12X? — 36X + 1, which by our
previous discussion is the minimal polynomial of x over Q.



