Solutions Exercise sheet 4

1. Let $F \subset K \subset L$ be fields. Show that $L: F$ is an algebraic extention if and only if $L: K$ and $K: F$ are algebraic.
Solution: (\Leftarrow) Assume $L: K$ and $K: F$ are algebraic. Let $l \in L$. Since $L: K$ is algebraic, l is a root of a non-zero polynomial over K. We will show that it is also the root of a non-zero polynomial with coefficients in F.

Let

$$
f(x):=a_{n} x^{n}+\cdots+a_{0}
$$

be a polynomial in $K[x]$ with root l. Since we also assume that the extention $K: F$ is algebraic, the degree $\left[F\left(a_{0}, \ldots, a_{n}\right): F\right]$ is finite. Then also the degree $\left[F\left(a_{0}, \ldots, a_{n}, l\right)\right.$: $F]$ is finite.
(\Rightarrow) Assume that $L: F$ is an algebraic extention. Then since $K \subset L$, we have that $K: F$ is algebraic as well.
If $l \in L$, then since $L: F$ is algebraic, there exists a non-zero polynomial f with coefficients in F such that $f(l)=0$. Since $F \subset K$, then $f \in K[x]$, so that l is algebraic over K and thus $L: K$ is algebraic as well.
2. Let $L: K$ be an algebraic field extention. Prove that every subring R of L which contains K is a field. Give a counter example in the case that the extention is not algebraic.
Solution: Let R be a subring as above. We need to prove that each element of R has a multiplicative inverse.

Let $0 \neq r \in R$. Then also $r \in L$ and since $L: K$ is algebraic, there exists a minimal polynomial $f(x):=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$, with $a_{i} \in K$ and $f(r)=0$. By minimality, the coefficient a_{0} has to be non-zero, and since K is a field, it has an inverse a_{0}^{-1} in K. Then

$$
r \cdot\left(-a_{0}^{-1}\right) \cdot\left(r^{n-1}+a_{n-1} r^{n-2}+\cdots+a_{1}\right)=1,
$$

and since $r, a_{i} \in R$, for each i, r is invertible in R. Thus R is a field.
3. (a) Let F be a field and $a \in \overline{\mathrm{Q}}$ that generates a field extention of F of degree 7 . Prove that a^{2} generated the same extention.
(b) Prove that part 3.a holds for 7 replaced by any odd integer.

Solution: (a) we have that a generates $F(a)$ with $[F(a): F]=7$. Note that $a^{2} \in F(a)$, so that $F\left(a^{2}\right) \subset F(a)$. Because of the multiplicativity of the field degree, we have that $\left[F(a): F\left(a^{2}\right)\right]$ must divide $[F(a): F]$. Since $a \notin F$, we have $F\left(a^{2}\right)=F(a)$.
(b) If $\left[F(a): F\left(a^{2}\right)\right]$ divides an odd integer, then it must be odd itself. Note that the minimal polynomial of a over $F\left(a^{2}\right)$ also divides the polynomial $x^{2}-a$. Hence the degree is an odd integer less or equal $\operatorname{deg}\left(x^{2}-a\right)=2$, and we obtain $F\left(a^{2}\right)=F(a)$.
4. Let p and q are two distinct primes. Prove that $\mathbb{Q}(\sqrt{p})$ and $\mathbb{Q}(\sqrt{q})$ are isomorphic as vector spaces over Q but not as fields.
Solution: The minimal polynomials of \sqrt{p} and \sqrt{q} over Q are $x^{2}-p$ and $x^{2}-q$ respectfully. Both have degree two, so the elements \sqrt{p} and \sqrt{q} are algebraic over \mathbb{Q}. Thus $\mathbb{Q}(\sqrt{p})$ and $\mathrm{Q}(\sqrt{q})$ are both Q -vector spaces of dimension 2 and thus isomorphic.
Claim. Prove that $\mathbb{Q}(\sqrt{p})$ and $\mathbb{Q}(\sqrt{q})$ are not isomorphic as fields.
Assume that there is a field isomorphism

$$
\varphi: \mathbb{Q}(\sqrt{p}) \rightarrow \mathbb{Q}(\sqrt{q})
$$

Since φ is a homomorphism, we have $\varphi(1)=1$. Then we have

$$
\varphi(\sqrt{p})^{2}=\varphi\left(\sqrt{p}^{2}\right)=\varphi(p)=p \cdot \varphi(1)=p
$$

That means, that there exists $x \in \mathbb{Q}(\sqrt{q})$ with $x^{2}=p$. We can write $x=a+b \sqrt{q}$ for some $a, b \in \mathbb{Q}$, which translates to

$$
a^{2}+q b^{2}+2 a b \sqrt{q}=p .
$$

If $a=0$, we would have to solve $q b^{2}=p$ for $b \in \mathbb{Q}$, which is not possible for prime numbers $p \neq q$. If $b=0$ then we would have to solve $a^{2}=p$ in \mathbb{Q}, which again is not possible. Hence we obtain our claim by contradiction.
5. Let $x=\sqrt{2}+\sqrt[3]{3}$.
(a) Prove that $\mathbb{Q}(x)=\mathbb{Q}(\sqrt{2}, \sqrt[3]{3})$. [Hint: Find the minimal polynomial of $x-\sqrt{2}$ and expand]
(b) Compute the minimal polynomial of x over $\mathbb{Q}(\sqrt{2})$. [Hint: $[\mathbb{Q}(x): \mathbb{Q}(\sqrt{2})]=$?]
(c) Compute the minimal polynomial of x over Q .

Solution:

(a) Clearly, $\mathrm{Q}(x) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt[3]{3})$. For the other inclusion, it is enough to prove that $\sqrt{2} \in$ $\mathrm{Q}(x)$, since this also implies that $\sqrt[3]{3}=x-\sqrt{2} \in \mathbb{Q}(x)$. This can be done by trying to solve Point (2): from $(x-\sqrt{2})^{3}=3$ we deduce $x^{3}+6 x-3=\sqrt{2}\left(3 x^{2}+2\right)$, so that

$$
\sqrt{2}=\frac{x^{3}+6 x-3}{3 x^{2}+2} \in \mathbb{Q}(x) .
$$

(b) From the previous point, we have that x satisfies the polynomial

$$
Q(X)=X^{3}-3 \sqrt{2} X^{2}+6 X-2 \sqrt{2}-3 \in \mathbb{Q}(\sqrt{2})[X] .
$$

To prove that this is the minimal polynomial, it is enough to prove that $\mathbb{Q}(x)=$ $\mathbb{Q}(\sqrt{2})(\sqrt[3]{3})$ is a degree-3 extension of $\mathbb{Q}(\sqrt{2})$, which is equivalent to saying that $\sqrt[3]{3}$ has degree 3 over $\mathbb{Q}(\sqrt{2})$. To prove this last equivalent statement, notice that $\sqrt[3]{3}$ is a root of the polynomial $f=X^{3}-3 \in \mathbb{Q}(\sqrt{2})[X]$, which can be easily checked to be irreducible. Indeed $\operatorname{deg}(f)=3$, so that it is enough to check that f has no root in
$\mathbb{Q}(\sqrt{2})$. For every element $a+b \sqrt{2} \in \mathbb{Q}(\sqrt{2})$, with $a, b \in \mathbb{Q}$, we have (as 1 and $\sqrt{2}$ are linear independent over \mathbb{Q}):

$$
(a+b \sqrt{2})^{3}=3 \Longleftrightarrow\left\{\begin{array}{l}
a^{3}+6 a b^{2}=3 \\
3 a^{2} b+2 b^{3}=0 .
\end{array}\right.
$$

The second equation holds for $b=0$ or $3 a^{2}+2 b^{2}=0$, which both give $b=0$, so that $a^{3}=3$, impossible in \mathbb{Q}. Hence $[\mathbb{Q}(x): \mathbb{Q}]=3$ and x has minimal polynomial Q over $Q(\sqrt{2})$.
(c) We have that $[\mathrm{Q}(\sqrt{2}): \mathbb{Q}]=2$, so that from what we found in the previous point we get

$$
[\mathbb{Q}(x): \mathbb{Q}]=[\mathbb{Q}(x): \mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2}): \mathbb{Q}]=6 .
$$

Then the minimal polynomial of x over Q has degree 6 .
Now, continuing the computations from Point (1) we get

$$
x^{6}+36 x^{2}+9+12 x^{4}-6 x^{3}-36 x=2\left(9 x^{4}+12 x^{2}+4\right),
$$

so that x is a root of $P(X)=X^{6}-6 X^{4}-6 X^{3}+12 X^{2}-36 X+1$, which by our previous discussion is the minimal polynomial of x over \mathbb{Q}.

