Solutions Exercise sheet 5

Exercises marked with * go beyond the standard subject matter.

1. (Constructions with compass and ruler) In the Euclidean plane consider the following two operations:
(a) (ruler) Given two points P, Q, we can draw a straight line through them.
(b) (compass) Given two points P, Q draw a circle whose center is one of P, Q and whose radius is equal to the distance between the given points.

Assume we are given two distinct points P_{0} and P_{1} in the plane. Through translation, rotation and stretching, we can assume that $P_{0}=(0,0)$ and $P_{1}=(1,0)$.
We say a point P is constructible if there exists a finite sequence of points

$$
P_{0}, P_{1}, \ldots, P_{n}=P
$$

in the plane with the following property. Let

$$
S_{j}=\left\{P_{0}, P_{1}, \ldots, P_{j}\right\}, \text { for } 1 \leqslant j \leqslant n .
$$

For each $2 \leqslant j \leqslant n, P_{j}$ is either
(i) the intersection of two distinct straight lines, each joining two points of S_{j-1}, or
(ii) a point of intersection of a straight line joining two points of S_{j-1} and a circle with centre a point of S_{j-1} and radius the distance between two points of S_{j-1}, or
(iii) a point of intersection of two distinct circles, each with centre a point of S_{j-1} and radius the distance between two points of S_{j-1}.

In case (iii), the centres must be different if the circles are to intersect: the radii may or may not be different.

If $P=(x, y)$ is a constructible point, we consider the extension $\mathbb{Q}(x, y): \mathbb{Q}$ generated by x and y. In this exercise we'll prove that if $P=(x, y)$ is a constructible point, the extension $\mathbb{Q}(x, y): \mathbb{Q}$ is finite, and $[\mathbb{Q}(x, y): \mathbb{Q}]=2^{r}$, for some non-negative integer r.
Let $P_{0}, P_{1}, \ldots, P_{n}=P$ be a sequence of points which satisfies the requirements of the definition of P being constructible. Let $P_{j}=\left(x_{j}, y_{j}\right)$, and for $1 \leqslant j \leqslant n$ let

$$
F_{j}=\mathbb{Q}\left(x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{j}, y_{j}\right),
$$

so that $F_{j+1}=F_{j}\left(x_{j+1}, y_{j+1}\right)$, for $1 \leqslant j<n$.
(a) Prove that $\left[F_{j+1}: F_{j}\right]=1$, if $\left(x_{j+1}, y_{j+1}\right)$ is the intersection of two distinct straight lines, each joining two points of S_{j}, i.e. arises from an intersection point of type (i).
(b) Prove that $\left[F_{j+1}: F_{j}\right]=1$ or 2 , if $\left(x_{j+1}, y_{j+1}\right)$ is a point of intersection of an appropriate straight line and circle, i.e. arises from an intersection point of type (ii).
(c) Prove that $\left[F_{j+1}: F_{j}\right]=1$ or 2 , if $\left(x_{j+1}, y_{j+1}\right)$ is a point of intersection of two circles.
(d) Show that

$$
\left[F_{n}: F_{1}\right]=\left[F_{n}: \mathbb{Q}\right]=2^{s},
$$

for some $s \in \mathbb{Z} \geqslant$ and conclude

$$
[\mathbb{Q}(x, y): \mathbb{Q}]=2^{r},
$$

for some non-negative integer r.
Solution: If $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ are two points in S_{j}, the equation of the line joining $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ is $\left(x-a_{2}\right)\left(b_{1}-b_{2}\right)=\left(a_{1}-a_{2}\right)\left(y-b_{2}\right)$, and therefore has the form

$$
\lambda x+\mu y+v=0
$$

where λ, μ and v are elements of F_{j}.
Similarly the equation of the circle, centre (a_{1}, b_{1}) and radius the distance between points $\left(a_{2}, b_{2}\right)$ and $\left(a_{3}, b_{3}\right)$ of S_{j}, is

$$
\left(x-a_{1}\right)^{2}+\left(y-b_{1}\right)^{2}=\left(a_{2}-a_{3}\right)^{2}+\left(b_{2}-b_{3}\right)^{2}
$$

and therefore has the form

$$
x^{2}+y^{2}+2 g x+2 f y+c=0
$$

where f, g and c are elements of F_{j}.
(a) Assume $\left(x_{j+1}, y_{j+1}\right)$ is the intersection of two distinct straight lines, each joining two points of S_{j}. In this case $\left(x_{j+1}, y_{j+1}\right)$ is the solution of two simultaneous equations

$$
\begin{aligned}
& \lambda_{1} x+\mu_{1} y+v_{1}=0 \\
& \lambda_{2} x+\mu_{2} y+v_{2}=0
\end{aligned}
$$

with coefficients in F_{j}. Solving these, we find that x_{j+1} and y_{j+1} are in F_{j}, so that $F_{j+1}=F_{j}$ and $\left[F_{j+1}: F_{j}\right]=1$.
(b) Assume $\left(x_{j+1}, y_{j+1}\right)$ is a point of intersection of an appropriate straight line and circle. In this case $\left(x_{j+1}, y_{j+1}\right)$ satisfies equations

$$
\begin{aligned}
& \lambda x+\mu y+\nu=0 \\
& x^{2}+y^{2}+2 g x+2 f y+c=0
\end{aligned}
$$

with coefficients in F_{j}. Suppose that $\lambda \neq 0$. We can then eliminate x, and obtain a monic quadratic equation in y. If this factors over F_{j} as

$$
(y-\alpha)(y-\beta)=0
$$

then $y_{j+1}=\alpha$ or β, so that $y_{j+1} \in F_{j}$; substituting in the linear equation, $x_{j+1} \in F_{j}$, so that $F_{j+1}=F_{j}$, and $\left[F_{j+1}: F_{j}\right]=1$. If the quadratic is irreducible, it must be the minimal polynomial for y_{j+1} : thus, $\left[F_{j}\left(y_{j+1}\right): F_{j}\right]=2$. As $x_{j+1}=-\lambda^{-1}\left(\mu y_{j+1}+v\right), x_{j+1} \in$ $F_{j}\left(y_{j+1}\right)$ and so $F_{j+1}=F_{j}\left(x_{j+1}, y_{j+1}\right)=F_{j}\left(y_{j+1}\right)$. If $\lambda=0$, then $\mu \neq 0$, and we can repeat the argument, interchanging the roles of x_{j+1} and y_{j+1}.
(c) Assume $\left(x_{j+1}, y_{j+1}\right)$ is a point of intersection of two suitable circles. In this case $\left(x_{j+1}, y_{j+1}\right)$ satisfies equations

$$
\begin{aligned}
& x^{2}+y^{2}+2 g_{1} x+2 f_{1} y+c_{1}=0 \\
& x^{2}+y^{2}+2 g_{2} x+2 f_{2} y+c_{2}=0
\end{aligned}
$$

with coefficients in F_{j}. Subtracting, $\left(x_{j+1}, y_{j+1}\right)$ satisfies the equation

$$
2\left(g_{1}-g_{2}\right) x+2\left(f_{1}-f_{2}\right) y+\left(c_{1}-c_{2}\right)=0
$$

We cannot have $g_{1}=g_{2}$ and $f_{1}=f_{2}$, for then the circles would be concentric, and would not intersect. Thus this case reduces to the previous one.
(d) By part (a) - (c), we have that $\left[F_{j+1} ; F_{j}\right]=1$ or 2 . Then, by the tower law, $\left[F_{n}: F_{1}\right]=$ $\left[F_{n}: \mathbb{Q}\right]=2^{s}$ for some non-negative integer s. But $\mathbb{Q}(x, y)=\mathbb{Q}\left(x_{n}, y_{n}\right)$ is a subfield of F_{n} containing \mathbb{Q}, so by the tower law again,

$$
\left[F_{n}: \mathbb{Q}(x, y)\right][\mathbb{Q}(x, y): \mathbb{Q}]=2^{s},
$$

and so $[\mathbb{Q}(x, y): \mathbb{Q}]=2^{r}$, for some non-negative integer r.
2. (Trisecting the angle) It is not possible to construct the angle $\alpha / 3$ for every angle α by using only a finite number of steps with a compass and ruler.
Hint: Consider $\cos \left(\frac{\pi}{9}\right)$ and find its minimal polynomial.
Solution: We will show that we can not trisect $\alpha=\frac{\pi}{3}$.
Using a ruler and compass it is possible to construct the angle $\frac{\pi}{3}$. If we could trisect α, this would mean we could construct the angle $\pi / 9$. This would then imply that we could construct a point P which is in the intersection of the line given by

$$
x \sin \frac{\pi}{9}=y \cos \frac{\pi}{9}
$$

and the circle with center P_{0} and radius $P_{0} P_{1}=1$. It would follow that $\left(\cos \frac{\pi}{9}, \sin \frac{\pi}{9}\right)$ would be constructible, which would in return mean

$$
\left[\mathbb{Q}\left(\cos \frac{\pi}{9}, \sin \frac{\pi}{9}\right): \mathbb{Q}\right]=\left[\mathbb{Q}\left(\cos \frac{\pi}{9}, \sin \frac{\pi}{9}\right): \mathbb{Q}\left(\cos \frac{\pi}{9}\right)\right]\left[\mathbb{Q}\left(\cos \frac{\pi}{9}\right): \mathbb{Q}\right]=2^{t}
$$

for some non-negative t.
Note that $\cos (\alpha)=\frac{1}{2} \in \mathbb{Q}$. Let $w:=2 \cos \frac{\pi}{9}$. Then the degree of the minimal polynomial of w over \mathbb{Q} is 3 : by the triple angle identity,

$$
\frac{1}{2}=\cos \left(3 \cdot \frac{\pi}{9}\right)=4 \cos \left(\frac{\pi}{9}\right)^{3}-3 \cos \left(\frac{\pi}{9}\right)
$$

so that $w^{3}-3 w-1=0$. Since the polynomial $x^{3}-3 x-1$ is irreducible over \mathbb{Q}, it is the minimal polynomial of w over \mathbb{Q}. Then $\left[\mathbb{Q}\left(\cos \frac{\pi}{9}\right): \mathbb{Q}\right]=3$, so by Exercise $1 . d, \frac{\pi}{9}=\frac{\alpha}{3}$ is not constructible.
3. (Doubling the cube) It is impossible to construct the number $\sqrt[3]{2}$ by using only a finite number of steps with a compass and ruler.
Solution: Note that the polynomial $X^{3}-2$ is irreducible over \mathbb{Q}. Then

$$
[\mathrm{Q}(\sqrt[3]{2}): \mathbb{Q}]=3
$$

so by Exercise 1.d, we have $\sqrt[3]{2}$ is not constructible..
4. (Squaring the circle) It is impossible to construct a square with the area of a given circle by using only a finite number of steps with a compass and ruler.
Solution: W.l.o.g. we consider a circle with radius $r=1$.
Then the degree $[\mathrm{Q}(\sqrt{\pi}): \mathbb{Q}]$ is infinite, since $\sqrt{\pi}$ is transcendental (since π is transcendental). Hence it is not constructible by Exercise 1.d.
5. * (Classical geometric constructions) For any set A of points, let $\operatorname{Cons}(A)$ be the set of all points that can be constructed from A (by iterated application of the operations in Exercise 1.).

We identify the Euclidean plane with \mathbb{C} with the usual distance $d(P, Q):=|P-Q|$. To be able to construct new points, we assume that A contains at least two different points. Through translation, rotation and stretching, we can assume that A contains at least the points 0 and 1.

Let $K=\operatorname{Cons}(A)$. Prove that
(i) K is a subfield of \mathbb{C}
(ii) $\forall z \in K: \bar{z} \in K$
(iii) $\forall z \in \mathbb{C}: z^{2} \in K \rightarrow z \in K$

Solution: Using a compass and ruler we can do the following basic constructions: copy a length, copy an angle, bisect lines, bisect angles and construct a perpendicular. Below we demonstrated the following constructions: (top left) bisecting a line; (top right) bisecting an angle; (bottom left) copying an angle; (bottom right) constructing a perpendicular (picture taken from Chap. 7.3, Galois theory, I. Stewart).

Now that we have these basic constructions, we can use them to construct more involved objects.
(a) Claim: $\forall z \in K:-z \in K$.

For $z=0$ this is clear. Otherwise, we are given different points 0 and z on the plane.
Draw a line through those two points. Then using a compass copy the length $|z-0|$ starting from 0 on the opposite side of the point z. Hence we have the point $-z$.
(b) Claim: $\forall z \in K: \bar{z} \in K$.

Construct a perpendicular as in the picture below:

(c) Claim: if the angles α, β are constructible, then also $\alpha \pm \beta$ are constructible.

This can be done by copying one angle right next to the other one; either on the outside (if we want to contruct $\alpha+\beta$) or on the inside (if constructing $\alpha-\beta$).
(d) Claim: $\forall z, z^{\prime} \in K: z+z^{\prime} \in K$.

If $z=0$ or $z^{\prime}=0$ this is clear. Assume $z \neq 0$ and $z^{\prime} \neq 0$. Draw the points $0, z, z^{\prime}$ on the plane. If all those points lie on the same line, we can simply transfer the lengths on that same line to add them together. Otherwise construct a parallelogram as below:

(e) Claim: If the lengths $a, b, c>0$ are constructible, then also $\frac{b c}{a}$ is constructible.

Draw a straight line starting at the point 0 and transfer the length a starting from the point 0 . We will denote this line segment by $\overline{0 P}$. Then transfer the length b starting at the point P and denote this line segment $\overline{P M}$. Then, we draw a straight line through the point P (which does not lie on the initial line) and transfer the length c onto it, starting from the point P. Denote this line segment with length c by $\overline{P Q}$. Next, draw a line parallel to $\overline{P Q}$, which goes through the point M. Finally, draw a line through the point 0 and Q as demonstrated in the picture below.

The length of the line segment $\overline{0 N}$ (as in the picture above) denoted by d will be the length $\frac{b c}{a}$: we have for the lengths a, b, c, d

$$
a: c=b: d
$$

so that $d=\frac{b c}{a}$.
(f) Claim: $z=r e^{i \alpha}$ is constructible \Longleftrightarrow the length r and the angle α are constructible. Consider:

(g) From the constructions above we obtain: $z, z^{\prime} \in K \Rightarrow z \cdot z^{\prime} \in K$, and if $z^{\prime} \neq 0$, then $z / z^{\prime} \in K$.
(h) Claim: If d is constructible, then also \sqrt{d} is constructible.

First we draw a line with length d and then we extend that line by 1 on one side. We will denote the length of the new line $d+1$ with $\overline{P R}$. Then bisect the line $\overline{P R}$ and denote the middle point by Q. Draw a circle with radius $\overline{Q R}$ with center Q. Then draw a perpendicular line through the point between the line d and 1 and have it intersect the circle. We will denote this height by h (see picture below).

Since the two smaller triangles on the picture are similar, we have

$$
1: h=h: d
$$

so $h=\sqrt{d}$.
(i) Claim: for $z \in K, w \in \mathbb{C}: w^{2}=z \Rightarrow w \in K$.

We can write $z=r e^{i \alpha}$, so that $w=\sqrt{r} \cdot e^{i \frac{\alpha}{2}}$. Then our claim follows from the constructions above, as we can bisect an angle and construct the square-root of a length.

Hence we have showed that K is a subfield of \mathbb{C} with the properties (i)-(iii).

