Solutions Exercise sheet 6

1. Let K be a field of characteristic 0 and $L: K$ a finite algebraic extention. Show that $L: K$ is simple if and only if there are only finitely many intermediate fields.
Solution: (\Leftarrow) Since the extention $L: K$ is finite, there exists $n \in \mathbb{Z}_{\geqslant 0}$ such that we can write $L=K\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, with $\alpha_{i} \in L$. We will prove this direction by induction over n.

For $n=1$ this is clear.
Set $M=K\left(\alpha_{1}, \ldots, \alpha_{n-1}\right)$. Then $K \subseteq M \subseteq L$ is an intermediate field, and by our induction hypothesis we have $M=K(\beta)$ for some $\beta \in L$.

Then $L=K\left(\alpha_{n}, \beta\right)=K\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. For each $a \in K$ define $M_{a}:=K\left(\alpha_{n}+a \beta\right)$. Then $K \subseteq M_{a} \subseteq L$ is an intermediate field.
By assumption, there exist only finitely many intermediate fields, but since K is infinite, there exist $a, b \in K$ with $a \neq b$ and $M_{a}=M_{b}$. Then

$$
\beta=\frac{\left(\alpha_{n}+b \beta\right)-\left(\alpha_{n}+a \beta\right)}{b-a} \in M_{b} .
$$

We have further that $\alpha_{n}=\left(\alpha_{n}+b \beta\right)-b \beta \in M_{b}$, since $\left(\alpha_{n}+b \beta\right) \in M_{b}$ and $b \beta \in M_{b}$. Hence $L=K\left(\alpha_{n}, \beta\right)=M_{b}=K\left(\alpha_{n}+b \beta\right)$, so that $L: K$ is simple.
(\Rightarrow) Assume that $L=K(\alpha)$, for some $\alpha \in L$ and let M be an intermediate field $K \subseteq M \subseteq$ L.

Then $L=M(\alpha)$. Let f be the minimal polynomial of α over K and let g be the minimal polynomial of α over M. Then $g \mid f$.
Write $g=a_{0}+a_{1} X+\cdots+X^{r}$ and let $M_{0}:=K\left(a_{0}, \ldots, a_{r-1}\right) \subseteq M$. Then $g \in M_{0}[X]$. For \tilde{g} the minimal polynomial of α over M_{0} we have $\tilde{g} \mid g$. Then

$$
\begin{aligned}
{[L: M] } & =\operatorname{deg}(g) \geqslant \operatorname{deg}(\tilde{g}) \\
& =\left[L: M_{0}\right]=[L: M]\left[M: M_{0}\right],
\end{aligned}
$$

so that $\left[M: M_{0}\right]=1$. Hence $M=M_{0}$ and M is determined by g (with $g \mid f$), and since f only has finitely many normed divisors (in a splitting field of f), there exist only finitely many intermediate fields.
2. (a) Prove that if $[K: k]=2$, then $k \subseteq K$ is a normal extention.
(b) Show that $\mathrm{Q}(\sqrt[4]{2}, i): \mathbb{Q}$ is normal.
(c) Show that $\mathbb{Q}(\sqrt[4]{2}(1+i)): ~ \mathbb{Q}$ is not normal over \mathbb{Q}.
(d) Deduce that given a tower $L: K: k$ of field extentions, $L: k$ needs not to be normal even if $L: K$ and $K: k$ are normal.

Solution:

(a) Since $[K: k]=2$, there is an element $\xi \in K \backslash k$. Then $k(\xi): k$ is a proper intermediate extension of $K: k$, and the only possibility is that $K=k(\xi)$, so that ξ has a degree-2 minimal polynomial $f(X)=X^{2}-s X+t \in k[X]$. Then $s-\xi \in k(\xi)=K$ and

$$
f(s-\xi)=s^{2}-2 s \xi+\xi^{2}-s^{2}+s \xi+t=-s \xi+\xi^{2}+t=f(\xi)=0
$$

Hence K is the splitting field of f, implying that $K: k$ is a normal extension.
(b) Let us prove that $\mathrm{Q}(\sqrt[4]{2}, i)$ is the splitting field of the polynomial $X^{4}-2 \in \mathbb{Q}[X]$ (which is irreducible by Eisenstein's criterion). This is quite straightforward: this splitting field must contain all the roots of the polynomials, i.e. $\sqrt[4]{2}, i \sqrt[4]{2},-\sqrt[4]{2},-i \sqrt[4]{2}$, implying that it must contain $i \sqrt[4]{2} / \sqrt[4]{2}=i$, so that it must contain $\mathbb{Q}(\sqrt[4]{2}, i)$. Clearly all the roots of $X^{4}-2$ lie $\mathbb{Q}(\sqrt[4]{2}, i)$ which is then the splitting field of $X^{4}-2$, so that it is a normal extension of \mathbb{Q}.
(c) Since $i \notin \mathbb{R} \supseteq \mathbb{Q}(\sqrt[4]{2})$ satisfies the polynomial $X^{2}+1 \in \mathbb{Q}(\sqrt[4]{2})$, we have $[\mathbb{Q}(\sqrt[4]{2}, i)$: $\mathbb{Q}(\sqrt[4]{2})]=2$. Moreover, $[\mathbb{Q}(\sqrt[4]{2}): \mathbb{Q}]=4$ (as $X^{4}-2$ is irreducible by Eisenstein's criterion), so that

$$
[\mathrm{Q}(\sqrt[4]{2}, i): \mathbb{Q}]=8
$$

Let $\gamma=\sqrt[4]{2}(1+i)$. It is enough to prove that the minimal polynomial of γ over \mathbb{Q} does not split in $\mathbb{Q}(\gamma)$ to conclude that $\mathbb{Q}(\gamma)$: \mathbb{Q} is not a normal extension.
Notice that $\gamma^{2}=\sqrt{2}(1-1+2 i)$, so that $\gamma^{4}=-8$, and γ satisfies the polynomial $g(X)=X^{4}+8 \in \mathbb{Q}[X]$. Hence $[\mathbb{Q}(\gamma): \mathbb{Q}] \leqslant 4$. On the other hand,

$$
\mathbb{Q}(\sqrt[4]{2}, i)=\mathbb{Q}(\sqrt[4]{2}(1+i), i)=\mathbb{Q}(\gamma)(i)
$$

with $[\mathbb{Q}(\sqrt[4]{2}, i): \mathbb{Q}(\gamma)] \leqslant 2$ since i satisfies $X^{2}+1 \in \mathbb{Q}(\gamma)[X]$. Then

$$
8=[\mathbb{Q}(\sqrt[4]{2}, i): \mathbb{Q}]=[\mathbb{Q}(\gamma)(i): \mathbb{Q}(\gamma)][\mathbb{Q}(\gamma): \mathbb{Q}]
$$

and the only possibility is that $[\mathbb{Q}(\gamma)(i): \mathbb{Q}(\gamma)]=2$ and $[\mathbb{Q}(\gamma): \mathbb{Q}]=4$. In particular, $g(X)$ is the minimal polynomial of γ over \mathbb{Q}, and $i \notin \mathbb{Q}(\gamma)$. But the roots of $g(X)$ are easily seen to be $u \gamma$, for $u \in\{ \pm 1, \pm i\}$, so that the root $i \gamma$ of g does not lie in $\mathbb{Q}(\gamma)$ (as $i \notin \mathbb{Q}(\gamma))$.
(d) Let $k=\mathbb{Q}, L=\mathbb{Q}(\gamma)$ and $K=\mathbb{Q}\left(\gamma^{2}\right)$. Then $\gamma^{2}=2 \sqrt{2} i \notin \mathbb{Q}$ satisfies the degree2 polynomial $Y^{2}+8 \in \mathbb{Q}[Y]$, so that $[K: k]=2$. Since $[L: k]=4$, we have $[L: K]=2$. Then by point 1 the extensions $L: K$ and $K: k$ are normal, while $L: k$ is not by previous point.
3. (a) Let K be field containing \mathbb{Q}. Show that any automorphism of K is a Q -automorphism.
(b) From now on, let $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ be a field automorphism. Show that σ is increasing:

$$
x \leqslant y \Longrightarrow \sigma(x) \leqslant \sigma(y)
$$

(c) Deduce that σ is continuous.
(d) Deduce that $\sigma=\mathrm{Id}_{\mathrm{R}}$.

Solution:

(a) Let $\sigma: K \rightarrow K$ be a field automorphism, and suppose that $\mathbb{Q} \subseteq K$. Then $\mathbb{Z} \subseteq K$, and for every $n \in \mathbb{Z}$ one has $\sigma(n)=\sigma(n \cdot 1)=n \sigma(1)$, by writing n as a sum of 1 's or -1 's and using additivity of σ. Hence $\left.\sigma\right|_{\mathbb{Z}}=\mathbf{I d}_{\mathbb{Z}}$. Now suppose $f \in \mathbb{Q}$, and write $f=m n^{-1}$ with $n \in \mathbb{Z}$. Then by multiplicativity of σ we obtain $\sigma(f)=\sigma(m) \sigma\left(n^{-1}\right)=m n^{-1}=$ f, so that $\left.\sigma\right|_{\mathbb{Q}}=\operatorname{Id}_{\mathbb{Q}}$ and σ is a Q -isomorphism.
(b) Let $x, y \in \mathbb{R}$ such that $x \leqslant y$. Then $y-x \geqslant 0$, so that there exist $z \in \mathbb{R}$ such that $y-x=z^{2}$. Then

$$
\sigma(y)-\sigma(x)=\sigma(y-x)=\sigma\left(z^{2}\right)=\sigma(z)^{2} \geqslant 0
$$

so that $\sigma(y) \geqslant \sigma(x)$ and σ is increasing.
(c) To prove continuity, it is enough to check that inverse images of intervals are open. For $I=(a, b) \subseteq \mathbb{R}$ an interval with $a \neq b$, by surjectivity of σ there exist $\alpha, \beta \in \mathbb{R}$ such that $\sigma(\alpha)=a$ and $\sigma(\beta)=b$, and since σ is injective and increasing we need $\alpha<\beta$. Then $\sigma^{-1}(I)=\{x \in \mathbb{R}: a<\sigma(x)<b\}=\{x \in \mathbb{R}: \sigma(\alpha)<\sigma(x)<\sigma(\beta)\}=(\alpha, \beta)$, which is an open interval in \mathbb{R}. Hence σ is continuous.
(d) Now σ is continuous and so is $\operatorname{Id}_{\mathbb{R}}$. By part (a), those two maps coincide on \mathbb{Q}, which is a dense subset of \mathbb{R}. Then they must coincide on the whole \mathbb{R}, so that $\sigma=\operatorname{Id}_{\mathbb{R}}$.
4. (a) Show that every finite field is isomorphic to $\mathbb{F}_{p}[x] /(f(x))$ for some prime p and some monic irreducinle polynomial $f(x)$ in $\mathbb{F}_{p}[x]$.
(b) Show that each irreducible polynomial $f(x)$ in $\mathbb{F}_{p}[x]$ of degree n divides $x^{p^{n}}-x$ and is separable.
(c) Factor $x^{8}-x$ and $x^{16}-x$ in $\mathrm{F}_{2}[x]$

Solution: (a) Let F be a finite field. We have seen in class that F has order p^{n} for some p and positive integer n. We have also seen that F^{\times}is cyclic. Let α be a generator and consider the evaluation at α homomorphism $E_{\alpha}: \mathbb{F}_{p}[x] \rightarrow F$ which sends $g(x) \in \mathbb{F}_{p}[x]$ to $g(\alpha)$ and fixes \mathbb{F}_{p}.
Since every element of F is either zero or a power of α, and $E_{\alpha}\left(x^{r}\right)=\alpha^{r}, E_{\alpha}$ is surjective. Therefore $F \simeq \mathbb{F}_{p}[x] /$ ker E_{α}.
Since F is a field, the kernel of E_{α} is a maximal ideal in $\mathbb{F}_{p}[x]$ and hence ker $E_{\alpha}=(f(x))$ for some monic irreducible polynomial $f(x)$.
(b) The field $\mathbb{F}_{p}[x] /(f(x))$ has order p^{n}, hence for all $t \in \mathbb{F}_{p}[x] /(f(x))$ we have $t^{p^{n}}=t$. In particular $x^{p^{n}} \equiv x \bmod (f(x))$. Therefore $f(x) \mid\left(x^{p^{n}}-x\right)$ in $\mathbb{F}_{p}[x]$. Since $x^{p^{n}}-x$ is separable so is its factor $f(x)$
(c) $x^{8}-x=x(x-1)\left(x^{3}+x+1\right)\left(x^{3}+x^{2}+1\right)$

Note that $8=2^{3}$ and all irreducible polynomials of degree 1 , namely x and $x-1$ as well as degree 3 irreducible polynomials in $\mathbb{F}_{2}[x]$, namely $x^{3}+x+1$ and $x^{3}+x^{2}+1$, appear in the factorization $x^{8}-3$.
Similarly we have

$$
x^{16}-x=x(x-1)\left(x^{2}+x+1\right)\left(x^{4}+x+1\right)\left(x^{4}+x^{3}+1\right)\left(x^{4}+x^{3}+x^{2}+x+1\right)
$$

and the polynomials appearing on the right are all of the irreducible polynomials in $\mathbb{F}_{2}[x]$ of degree 1,2 and 4 .
5. (a) Show that $\left(x^{d}-1\right) \mid\left(x^{n}-1\right)$ if and only if $d \mid n$
(b) Prove that a subfield F of $\mathbb{F}_{p^{n}}$ has order p^{d} where $d \mid n$.
(c) Show that for each $d \mid n$ there is one subfield F of $\mathbb{F}_{p^{n}}$ of order p^{d}.

Solution:

(a) Assume $\left(x^{d}-1\right) \mid\left(x^{n}-1\right)$. By Euclidean division, we can write $n=q d+r$, for $q, r \in \mathbb{Z}_{\geqslant 0}$ with $0 \leqslant r<d$. Note that

$$
\left(x^{d}-1\right) \mid\left(x^{d}-1\right)\left(x^{n-d}+x^{n-2 d}+\cdots+x^{n-q d}+1\right)
$$

Since $\left(x^{d}-1\right)\left(x^{n-d}+x^{n-2 d}+\cdots+x^{n-q d}+1\right)=x^{n}+x^{d}-x^{n-q d}-1$, we have $x^{d}-1 \mid x^{n}-1+x^{d}-x^{r}$. Together with $\left(x^{d}-1\right) \mid\left(x^{n}-1\right)$, this implies

$$
\left(x^{d}-1\right) \mid\left(x^{d}-x^{r}\right)=\left(x^{d}-1\right)+\left(1-x^{r}\right)
$$

which gives $\left(x^{d}-1\right) \mid\left(x^{r}-1\right)$. Hence $r=0$, which implies $d \mid n$.
The other direction follows from the identity

$$
x^{n}-1=\left(x^{d}\right)^{\frac{n}{d}}-1=\left(x^{d}-1\right)\left(\left(x^{d}\right)^{\frac{n}{d}-1}+\left(x^{d}\right)^{\frac{n}{d}-2}+\cdots+\left(x^{d}\right)+1\right) .
$$

(b) Let F be a subfield of $\mathbb{F}_{p^{n}}$. Then $|F|=p^{d}$ for $d=\left[F: \mathbb{F}_{p}\right]$.

Note that the group of units F^{*} is a finite abelian group. Then by the main theorem on finitely generated abelian groups,

$$
\begin{equation*}
F^{*} \cong \mathbb{Z} / e_{1} \mathbb{Z} \times \ldots \mathbb{Z} / e_{r} \mathbb{Z} \tag{1}
\end{equation*}
$$

for $e_{1}, \ldots, e_{r} \in \mathbb{Z}_{\geqslant 1}$ with $e_{1}\left|e_{2}\right| \cdots \mid e_{r}$. Then we have for each $a \in \mathbb{F}^{*}$ that $a^{e_{r}}=1$. Thus a is a zero of $X^{e_{r}}-1$ and $\left|F^{*}\right| \leqslant e_{r}$. From (1) it also follows that $e_{1} \cdots e_{r}=\left|F^{*}\right|$. Hence $e_{1}=\cdots=e_{r-1}=1$ and thus $r=1$ and $\left|F^{*}\right|$ is cyclic of order $p^{d}-1$.
Since $0^{p^{d}}=0$, we have that each $a \in F$ is a zero of the polynomial $X^{p^{d}}-X$, so F is a splitting field of the polynomial $X^{p^{d}}-X$ over \mathbb{F}_{p}.
Similarly, $\mathbb{F}_{p^{n}}$ is the splitting field of the polynomial $X^{p^{n}}-X$, and since F is a subfield of $\mathbb{F}_{p^{n}}$, we have $\left(X^{p^{d}}-X\right) \mid\left(X^{p^{n}}-X\right)$, so by part (a), $p^{d}-1$ divides $p^{n}-1$. Replacing x by p in the proof of part (a), we obtain $d \mid n$.
(c) Let d be a positive integer such that $d \mid n$. Let F be the splitting field of the polynomial $X^{p^{d}}-X$ over \mathbb{F}_{p}. Then by the solution of part (b), F is a field of order p^{d}. Note that $\mathbb{F}_{p^{n}}$ is a splitting field of the polynomial $X^{p^{n}}-X$ over \mathbb{F}_{p}. Since $d \mid n$ implies $p^{d}-1 \mid p^{n}-1$, by part (a) we have that $X^{p^{d}}-X$ divides $X^{p^{n}}-X$. Hence F is an intermediate field $\mathrm{F}_{p} \subseteq F \subseteq \mathbb{F}_{p^{n}}$.

