Solutions Exercise sheet 6

1. Let K be a field of characteristic 0 and L : K a finite algebraic extention. Show that L : K is simple if and only if there are only finitely many intermediate fields.

Solution: (\Leftarrow) Since the extention L : K is finite, there exists $n \in \mathbb{Z}_{\geq 0}$ such that we can write $L = K(\alpha_1, \ldots, \alpha_n)$, with $\alpha_i \in L$. We will prove this direction by induction over n.

For n = 1 this is clear.

Set $M = K(\alpha_1, \ldots, \alpha_{n-1})$. Then $K \subseteq M \subseteq L$ is an intermediate field, and by our induction hypothesis we have $M = K(\beta)$ for some $\beta \in L$.

Then $L = K(\alpha_n, \beta) = K(\alpha_1, \dots, \alpha_n)$. For each $a \in K$ define $M_a := K(\alpha_n + a\beta)$. Then $K \subseteq M_a \subseteq L$ is an intermediate field.

By assumption, there exist only finitely many intermediate fields, but since K is infinite, there exist $a, b \in K$ with $a \neq b$ and $M_a = M_b$. Then

$$\beta = \frac{(\alpha_n + b\beta) - (\alpha_n + a\beta)}{b - a} \in M_b.$$

We have further that $\alpha_n = (\alpha_n + b\beta) - b\beta \in M_b$, since $(\alpha_n + b\beta) \in M_b$ and $b\beta \in M_b$. Hence $L = K(\alpha_n, \beta) = M_b = K(\alpha_n + b\beta)$, so that L : K is simple.

 (\Rightarrow) Assume that $L = K(\alpha)$, for some $\alpha \in L$ and let M be an intermediate field $K \subseteq M \subseteq L$.

Then $L = M(\alpha)$. Let f be the minimal polynomial of α over K and let g be the minimal polynomial of α over M. Then $g \mid f$.

Write $g = a_0 + a_1 X + \cdots + X^r$ and let $M_0 := K(a_0, \ldots, a_{r-1}) \subseteq M$. Then $g \in M_0[X]$. For \tilde{g} the minimal polynomial of α over M_0 we have $\tilde{g} \mid g$. Then

$$[L:M] = \deg(g) \ge \deg(\tilde{g})$$
$$= [L:M_0] = [L:M][M:M_0],$$

so that $[M : M_0] = 1$. Hence $M = M_0$ and M is determined by g (with $g \mid f$), and since f only has finitely many normed divisors (in a splitting field of f), there exist only finitely many intermediate fields.

- **2**. (a) Prove that if [K : k] = 2, then $k \subseteq K$ is a normal extention.
 - (b) Show that $\mathbb{Q}(\sqrt[4]{2}, i) : \mathbb{Q}$ is normal.
 - (c) Show that $\mathbb{Q}(\sqrt[4]{2}(1+i)) : \mathbb{Q}$ is not normal over \mathbb{Q} .
 - (d) Deduce that given a tower L : K : k of field extentions, L : k needs not to be normal even if L : K and K : k are normal.

Solution:

(a) Since [K : k] = 2, there is an element ξ ∈ K\k. Then k(ξ) : k is a proper intermediate extension of K : k, and the only possibility is that K = k(ξ), so that ξ has a degree-2 minimal polynomial f(X) = X² − sX + t ∈ k[X]. Then s − ξ ∈ k(ξ) = K and

$$f(s-\xi) = s^2 - 2s\xi + \xi^2 - s^2 + s\xi + t = -s\xi + \xi^2 + t = f(\xi) = 0.$$

Hence K is the splitting field of f, implying that K : k is a normal extension.

- (b) Let us prove that Q(⁴√2, i) is the splitting field of the polynomial X⁴−2 ∈ Q[X] (which is irreducible by Eisenstein's criterion). This is quite straightforward: this splitting field must contain all the roots of the polynomials, i.e. ⁴√2, i⁴√2, -⁴√2, -i⁴√2, implying that it must contain i⁴√2/⁴√2 = i, so that it must contain Q(⁴√2, i). Clearly all the roots of X⁴ − 2 lie Q(⁴√2, i) which is then the splitting field of X⁴ − 2, so that it is a normal extension of Q.
- (c) Since $i \notin \mathbb{R} \supseteq \mathbb{Q}(\sqrt[4]{2})$ satisfies the polynomial $X^2 + 1 \in \mathbb{Q}(\sqrt[4]{2})$, we have $[\mathbb{Q}(\sqrt[4]{2}, i) : \mathbb{Q}] = 2$. Moreover, $[\mathbb{Q}(\sqrt[4]{2}) : \mathbb{Q}] = 4$ (as $X^4 2$ is irreducible by Eisenstein's criterion), so that

$$\left[\mathbb{Q}(\sqrt[4]{2},i):\mathbb{Q}\right] = 8.$$

Let $\gamma = \sqrt[4]{2}(1+i)$. It is enough to prove that the minimal polynomial of γ over \mathbb{Q} does not split in $\mathbb{Q}(\gamma)$ to conclude that $\mathbb{Q}(\gamma) : \mathbb{Q}$ is not a normal extension.

Notice that $\gamma^2 = \sqrt{2}(1 - 1 + 2i)$, so that $\gamma^4 = -8$, and γ satisfies the polynomial $g(X) = X^4 + 8 \in \mathbb{Q}[X]$. Hence $[\mathbb{Q}(\gamma) : \mathbb{Q}] \leq 4$. On the other hand,

$$\mathbb{Q}(\sqrt[4]{2},i) = \mathbb{Q}(\sqrt[4]{2}(1+i),i) = \mathbb{Q}(\gamma)(i),$$

with $[\mathbb{Q}(\sqrt[4]{2}, i) : \mathbb{Q}(\gamma)] \leq 2$ since *i* satisfies $X^2 + 1 \in \mathbb{Q}(\gamma)[X]$. Then

$$8 = [\mathbb{Q}(\sqrt[4]{2}, i) : \mathbb{Q}] = [\mathbb{Q}(\gamma)(i) : \mathbb{Q}(\gamma)][\mathbb{Q}(\gamma) : \mathbb{Q}],$$

and the only possibility is that $[\mathbb{Q}(\gamma)(i) : \mathbb{Q}(\gamma)] = 2$ and $[\mathbb{Q}(\gamma) : \mathbb{Q}] = 4$. In particular, g(X) is the minimal polynomial of γ over \mathbb{Q} , and $i \notin \mathbb{Q}(\gamma)$. But the roots of g(X) are easily seen to be $u\gamma$, for $u \in \{\pm 1, \pm i\}$, so that the root $i\gamma$ of g does not lie in $\mathbb{Q}(\gamma)$ (as $i \notin \mathbb{Q}(\gamma)$).

- (d) Let $k = \mathbb{Q}$, $L = \mathbb{Q}(\gamma)$ and $K = \mathbb{Q}(\gamma^2)$. Then $\gamma^2 = 2\sqrt{2}i \notin \mathbb{Q}$ satisfies the degree-2 polynomial $Y^2 + 8 \in \mathbb{Q}[Y]$, so that [K : k] = 2. Since [L : k] = 4, we have [L : K] = 2. Then by point 1 the extensions L : K and K : k are normal, while L : k is not by previous point.
- **3**. (a) Let K be field containing \mathbb{Q} . Show that any automorphism of K is a \mathbb{Q} -automorphism.
 - (b) From now on, let $\sigma : \mathbb{R} \to \mathbb{R}$ be a field automorphism. Show that σ is increasing:

$$x \leqslant y \Longrightarrow \sigma(x) \leqslant \sigma(y).$$

- (c) Deduce that σ is continuous.
- (d) Deduce that $\sigma = \text{Id}_{\mathbb{R}}$.

Solution:

- (a) Let σ : K → K be a field automorphism, and suppose that Q ⊆ K. Then Z ⊆ K, and for every n ∈ Z one has σ(n) = σ(n · 1) = nσ(1), by writing n as a sum of 1's or −1's and using additivity of σ. Hence σ|_Z = Id_Z. Now suppose f ∈ Q, and write f = mn⁻¹ with n ∈ Z. Then by multiplicativity of σ we obtain σ(f) = σ(m)σ(n⁻¹) = mn⁻¹ = f, so that σ|_Q = Id_Q and σ is a Q-isomorphism.
- (b) Let $x, y \in \mathbb{R}$ such that $x \leq y$. Then $y x \ge 0$, so that there exist $z \in \mathbb{R}$ such that $y x = z^2$. Then

$$\sigma(y) - \sigma(x) = \sigma(y - x) = \sigma(z^2) = \sigma(z)^2 \ge 0,$$

so that $\sigma(y) \ge \sigma(x)$ and σ is increasing.

- (c) To prove continuity, it is enough to check that inverse images of intervals are open. For I = (a, b) ⊆ ℝ an interval with a ≠ b, by surjectivity of σ there exist α, β ∈ ℝ such that σ(α) = a and σ(β) = b, and since σ is injective and increasing we need α < β. Then σ⁻¹(I) = {x ∈ ℝ : a < σ(x) < b} = {x ∈ ℝ : σ(α) < σ(x) < σ(β)} = (α, β), which is an open interval in ℝ. Hence σ is continuous.</p>
- (d) Now σ is continuous and so is $Id_{\mathbb{R}}$. By part (a), those two maps coincide on \mathbb{Q} , which is a dense subset of \mathbb{R} . Then they must coincide on the whole \mathbb{R} , so that $\sigma = Id_{\mathbb{R}}$.
- 4. (a) Show that every finite field is isomorphic to $\mathbb{F}_p[x]/(f(x))$ for some prime p and some monic irreducinle polynomial f(x) in $\mathbb{F}_p[x]$.
 - (b) Show that each irreducible polynomial f(x) in $\mathbb{F}_p[x]$ of degree *n* divides $x^{p^n} x$ and is separable.
 - (c) Factor $x^8 x$ and $x^{16} x$ in $\mathbb{F}_2[x]$

Solution: (a) Let F be a finite field. We have seen in class that F has order p^n for some p and positive integer n. We have also seen that F^{\times} is cyclic. Let α be a generator and consider the evaluation at α homomorphism $E_{\alpha} : \mathbb{F}_p[x] \to F$ which sends $g(x) \in \mathbb{F}_p[x]$ to $g(\alpha)$ and fixes \mathbb{F}_p .

Since every element of F is either zero or a power of α , and $E_{\alpha}(x^r) = \alpha^r$, E_{α} is surjective. Therefore $F \simeq \mathbb{F}_p[x]/\ker E_{\alpha}$.

Since F is a field, the kernel of E_{α} is a maximal ideal in $\mathbb{F}_p[x]$ and hence ker $E_{\alpha} = (f(x))$ for some monic irreducible polynomial f(x).

(b) The field $\mathbb{F}_p[x]/(f(x))$ has order p^n , hence for all $t \in \mathbb{F}_p[x]/(f(x))$ we have $t^{p^n} = t$. In particular $x^{p^n} \equiv x \mod (f(x))$. Therefore $f(x)|(x^{p^n} - x)$ in $\mathbb{F}_p[x]$. Since $x^{p^n} - x$ is separable so is its factor f(x)

(c)
$$x^8 - x = x(x-1)(x^3 + x + 1)(x^3 + x^2 + 1)$$

Note that $8 = 2^3$ and all irreducible polynomials of degree 1, namely x and x - 1 as well as degree 3 irreducible polynomials in $\mathbb{F}_2[x]$, namely $x^3 + x + 1$ and $x^3 + x^2 + 1$, appear in the factorization $x^8 - 3$.

Similarly we have

$$x^{16} - x = x(x-1)(x^2 + x + 1)(x^4 + x + 1)(x^4 + x^3 + 1)(x^4 + x^3 + x^2 + x + 1)$$

and the polynomials appearing on the right are all of the irreducible polynomials in $\mathbb{F}_2[x]$ of degree 1,2 and 4.

- 5. (a) Show that $(x^d 1)|(x^n 1)$ if and only if d|n
 - (b) Prove that a subfield F of \mathbb{F}_{p^n} has order p^d where d|n.

(c) Show that for each d|n there is one subfield F of \mathbb{F}_{p^n} of order p^d .

Solution:

(a) Assume $(x^d - 1) | (x^n - 1)$. By Euclidean division, we can write n = qd + r, for $q, r \in \mathbb{Z}_{\geq 0}$ with $0 \leq r < d$. Note that

$$(x^{d}-1) \mid (x^{d}-1)(x^{n-d}+x^{n-2d}+\dots+x^{n-qd}+1)$$

Since $(x^d - 1)(x^{n-d} + x^{n-2d} + \dots + x^{n-qd} + 1) = x^n + x^d - x^{n-qd} - 1$, we have $x^d - 1 | x^n - 1 + x^d - x^r$. Together with $(x^d - 1) | (x^n - 1)$, this implies

$$(x^{d} - 1) \mid (x^{d} - x^{r}) = (x^{d} - 1) + (1 - x^{r}),$$

which gives $(x^d - 1) | (x^r - 1)$. Hence r = 0, which implies d | n. The other direction follows from the identity

$$x^{n} - 1 = (x^{d})^{\frac{n}{d}} - 1 = (x^{d} - 1)((x^{d})^{\frac{n}{d}-1} + (x^{d})^{\frac{n}{d}-2} + \dots + (x^{d}) + 1)$$

(b) Let F be a subfield of F_{pⁿ}. Then |F| = p^d for d = [F : F_p].
Note that the group of units F* is a finite abelian group. Then by the main theorem on finitely generated abelian groups,

$$F^* \cong \mathbb{Z}/e_1\mathbb{Z} \times \dots \mathbb{Z}/e_r\mathbb{Z},\tag{1}$$

for $e_1, \ldots, e_r \in \mathbb{Z}_{\geq 1}$ with $e_1 | e_2 | \cdots | e_r$. Then we have for each $a \in \mathbb{F}^*$ that $a^{e_r} = 1$. Thus a is a zero of $X^{e_r} - 1$ and $|F^*| \leq e_r$. From (1) it also follows that $e_1 \cdots e_r = |F^*|$. Hence $e_1 = \cdots = e_{r-1} = 1$ and thus r = 1 and $|F^*|$ is cyclic of order $p^d - 1$. Since $0^{p^d} = 0$, we have that each $a \in F$ is a zero of the polynomial $X^{p^d} - X$, so F is a

Since $0^p = 0$, we have that each $a \in F$ is a zero of the polynomial $X^p - X$, so F is a splitting field of the polynomial $X^{p^d} - X$ over \mathbb{F}_p .

Similarly, \mathbb{F}_{p^n} is the splitting field of the polynomial $X^{p^n} - X$, and since F is a subfield of \mathbb{F}_{p^n} , we have $(X^{p^d} - X) \mid (X^{p^n} - X)$, so by part (a), $p^d - 1$ divides $p^n - 1$. Replacing x by p in the proof of part (a), we obtain $d \mid n$.

(c) Let d be a positive integer such that $d \mid n$. Let F be the splitting field of the polynomial $X^{p^d} - X$ over \mathbb{F}_p . Then by the solution of part (b), F is a field of order p^d . Note that \mathbb{F}_{p^n} is a splitting field of the polynomial $X^{p^n} - X$ over \mathbb{F}_p . Since $d \mid n$ implies $p^d - 1 \mid p^n - 1$, by part (a) we have that $X^{p^d} - X$ divides $X^{p^n} - X$. Hence F is an intermediate field $\mathbb{F}_p \subseteq F \subseteq \mathbb{F}_{p^n}$.