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Solutions Exercise sheet 6

1. Let K be a field of characteristic 0 and L : K a finite algebraic extention. Show that L : K
is simple if and only if there are only finitely many intermediate fields.

Solution: pðq Since the extention L : K is finite, there exists n P Zě0 such that we can write
L “ Kpα1, . . . , αnq, with αi P L. We will prove this direction by induction over n.

For n “ 1 this is clear.

Set M “ Kpα1, . . . , αn´1q. Then K Ď M Ď L is an intermediate field, and by our induction
hypothesis we have M “ Kpβq for some β P L.

Then L “ Kpαn, βq “ Kpα1, . . . , αnq. For each a P K define Ma :“ Kpαn ` aβq. Then
K Ď Ma Ď L is an intermediate field.

By assumption, there exist only finitely many intermediate fields, but since K is infinite,
there exist a, b P K with a ‰ b and Ma “ Mb. Then

β “
pαn ` bβq ´ pαn ` aβq

b ´ a
P Mb.

We have further that αn “ pαn ` bβq ´ bβ P Mb, since pαn ` bβq P Mb and bβ P Mb. Hence
L “ Kpαn, βq “ Mb “ Kpαn ` bβq, so that L : K is simple.

pñq Assume that L “ Kpαq, for some α P L and let M be an intermediate field K Ď M Ď

L.

Then L “ Mpαq. Let f be the minimal polynomial of α over K and let g be the minimal
polynomial of α over M . Then g | f .

Write g “ a0 ` a1X ` ¨ ¨ ¨ ` Xr and let M0 :“ Kpa0, . . . , ar´1q Ď M . Then g P M0rXs.
For g̃ the minimal polynomial of α over M0 we have g̃ | g. Then

rL : M s “ degpgq ě degpg̃q

“ rL : M0s “ rL : M srM : M0s,

so that rM : M0s “ 1. Hence M “ M0 and M is determined by g (with g | f ), and since
f only has finitely many normed divisors (in a splitting field of f ), there exist only finitely
many intermediate fields.

2. (a) Prove that if rK : ks “ 2, then k Ď K is a normal extention.

(b) Show that Qp
4

?
2, iq : Q is normal.

(c) Show that Qp
4

?
2p1 ` iqq : Q is not normal over Q.

(d) Deduce that given a tower L : K : k of field extentions, L : k needs not to be normal
even if L : K and K : k are normal.

Solution:
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(a) Since rK : ks “ 2, there is an element ξ P Kzk. Then kpξq : k is a proper intermediate
extension of K : k, and the only possibility is that K “ kpξq, so that ξ has a degree-2
minimal polynomial fpXq “ X2 ´ sX ` t P krXs. Then s ´ ξ P kpξq “ K and

fps ´ ξq “ s2 ´ 2sξ ` ξ2 ´ s2 ` sξ ` t “ ´sξ ` ξ2 ` t “ fpξq “ 0.

Hence K is the splitting field of f , implying that K : k is a normal extension.

(b) Let us prove thatQp
4

?
2, iq is the splitting field of the polynomial X4´2 P QrXs (which

is irreducible by Eisenstein’s criterion). This is quite straightforward: this splitting field
must contain all the roots of the polynomials, i.e. 4

?
2, i 4

?
2,´

4
?
2,´i 4

?
2, implying that

it must contain i 4
?
2{

4
?
2 “ i, so that it must contain Qp

4
?
2, iq. Clearly all the roots of

X4 ´ 2 lie Qp
4

?
2, iq which is then the splitting field of X4 ´ 2, so that it is a normal

extension of Q.

(c) Since i R R Ě Qp
4

?
2q satisfies the polynomial X2 ` 1 P Qp

4
?
2q, we have rQp

4
?
2, iq :

Qp
4

?
2qs “ 2. Moreover, rQp

4
?
2q : Qs “ 4 (as X4 ´ 2 is irreducible by Eisenstein’s

criterion), so that
rQp

4
?
2, iq : Qs “ 8.

Let γ “
4

?
2p1` iq. It is enough to prove that the minimal polynomial of γ over Q does

not split in Qpγq to conclude that Qpγq : Q is not a normal extension.
Notice that γ2 “

?
2p1 ´ 1 ` 2iq, so that γ4 “ ´8, and γ satisfies the polynomial

gpXq “ X4 ` 8 P QrXs. Hence rQpγq : Qs ď 4. On the other hand,

Qp
4

?
2, iq “ Qp

4
?
2p1 ` iq, iq “ Qpγqpiq,

with rQp
4

?
2, iq : Qpγqs ď 2 since i satisfies X2 ` 1 P QpγqrXs. Then

8 “ rQp
4
?
2, iq : Qs “ rQpγqpiq : QpγqsrQpγq : Qs,

and the only possibility is that rQpγqpiq : Qpγqs “ 2 and rQpγq : Qs “ 4. In particular,
gpXq is the minimal polynomial of γ over Q, and i R Qpγq. But the roots of gpXq are
easily seen to be uγ, for u P t˘1,˘iu, so that the root iγ of g does not lie in Qpγq (as
i R Qpγq).

(d) Let k “ Q, L “ Qpγq and K “ Qpγ2q. Then γ2 “ 2
?
2i R Q satisfies the degree-

2 polynomial Y 2 ` 8 P QrY s, so that rK : ks “ 2. Since rL : ks “ 4, we have
rL : Ks “ 2. Then by point 1 the extensions L : K and K : k are normal, while L : k
is not by previous point.

3. (a) Let K be field containing Q. Show that any automorphism of K is a Q-automorphism.

(b) From now on, let σ : R Ñ R be a field automorphism. Show that σ is increasing:

x ď y ùñ σpxq ď σpyq.

(c) Deduce that σ is continuous.

(d) Deduce that σ “ IdR.

Solution:
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(a) Let σ : K Ñ K be a field automorphism, and suppose that Q Ď K. Then Z Ď K, and
for every n P Z one has σpnq “ σpn ¨ 1q “ nσp1q, by writing n as a sum of 1’s or ´1’s
and using additivity of σ. Hence σ|Z “ IdZ. Now suppose f P Q, and write f “ mn´1

with n P Z. Then by multiplicativity of σ we obtain σpfq “ σpmqσpn´1q “ mn´1 “

f , so that σ|Q “ IdQ and σ is a Q-isomorphism.
(b) Let x, y P R such that x ď y. Then y ´ x ě 0, so that there exist z P R such that

y ´ x “ z2. Then

σpyq ´ σpxq “ σpy ´ xq “ σpz2q “ σpzq
2

ě 0,

so that σpyq ě σpxq and σ is increasing.
(c) To prove continuity, it is enough to check that inverse images of intervals are open. For

I “ pa, bq Ď R an interval with a ‰ b, by surjectivity of σ there exist α, β P R such
that σpαq “ a and σpβq “ b, and since σ is injective and increasing we need α ă β.
Then σ´1pIq “ tx P R : a ă σpxq ă bu “ tx P R : σpαq ă σpxq ă σpβqu “ pα, βq,
which is an open interval in R. Hence σ is continuous.

(d) Now σ is continuous and so is IdR. By part (a), those two maps coincide on Q, which
is a dense subset of R. Then they must coincide on the whole R, so that σ “ IdR.

4. (a) Show that every finite field is isomorphic to Fprxs{pfpxqq for some prime p and some
monic irreducinle polynomial fpxq in Fprxs.

(b) Show that each irreducible polynomial fpxq in Fprxs of degree n divides xpn ´ x and
is separable.

(c) Factor x8 ´ x and x16 ´ x in F2rxs

Solution: (a) Let F be a finite field. We have seen in class that F has order pn for some p
and positive integer n.We have also seen that Fˆ is cyclic. Let α be a generator and consider
the evaluation at α homomorphism Eα : Fprxs Ñ F which sends gpxq P Fprxs to gpαq and
fixes Fp.

Since every element of F is either zero or a power of α, and Eαpxrq “ αr, Eα is surjective.

Therefore F » Fprxs{ kerEα.

Since F is a field, the kernel of Eα is a maximal ideal in Fprxs and hence kerEα “ pfpxqq

for some monic irreducible polynomial fpxq.

(b) The field Fprxs{pfpxqq has order pn, hence for all t P Fprxs{pfpxqq we have tp
n

“ t.
In particular xpn ” x mod pfpxqq. Therefore fpxq|pxpn ´ xq in Fprxs. Since xpn ´ x is
separable so is its factor fpxq

(c) x8 ´ x “ xpx ´ 1qpx3 ` x ` 1qpx3 ` x2 ` 1q

Note that 8 “ 23 and all irreducible polynomials of degree 1, namely x and x ´ 1 as well as
degree 3 irreducible polynomials in F2rxs, namely x3 ` x` 1 and x3 ` x2 ` 1, appear in the
factorization x8 ´ 3.

Similarly we have

x16
´ x “ xpx ´ 1qpx2

` x ` 1qpx4
` x ` 1qpx4

` x3
` 1qpx4

` x3
` x2

` x ` 1q

and the polynomials appearing on the right are all of the irreducible polynomials in F2rxs of
degree 1,2 and 4.
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5. (a) Show that pxd ´ 1q|pxn ´ 1q if and only if d|n

(b) Prove that a subfield F of Fpn has order pd where d|n.

(c) Show that for each d|n there is one subfield F of Fpn of order pd.

Solution:

(a) Assume pxd ´ 1q | pxn ´ 1q. By Euclidean division, we can write n “ qd ` r, for
q, r P Zě0 with 0 ď r ă d. Note that

pxd
´ 1q | pxd

´ 1qpxn´d
` xn´2d

` ¨ ¨ ¨ ` xn´qd
` 1q

Since pxd ´ 1qpxn´d ` xn´2d ` ¨ ¨ ¨ ` xn´qd ` 1q “ xn ` xd ´ xn´qd ´ 1, we have
xd ´ 1 | xn ´ 1 ` xd ´ xr. Together with pxd ´ 1q | pxn ´ 1q, this implies

pxd
´ 1q | pxd

´ xr
q “ pxd

´ 1q ` p1 ´ xr
q,

which gives pxd ´ 1q | pxr ´ 1q. Hence r “ 0, which implies d | n.
The other direction follows from the identity

xn
´ 1 “ pxd

q
n
d ´ 1 “ pxd

´ 1qppxd
q
n
d

´1
` pxd

q
n
d

´2
` ¨ ¨ ¨ ` pxd

q ` 1q.

(b) Let F be a subfield of Fpn . Then |F | “ pd for d “ rF : Fps.
Note that the group of units F ˚ is a finite abelian group. Then by the main theorem on
finitely generated abelian groups,

F ˚
– Z{e1Zˆ . . .Z{erZ, (1)

for e1, . . . , er P Zě1 with e1 | e2 | ¨ ¨ ¨ | er. Then we have for each a P F˚ that aer “ 1.
Thus a is a zero of Xer ´1 and |F ˚| ď er. From (1) it also follows that e1 ¨ ¨ ¨ er “ |F ˚|.
Hence e1 “ ¨ ¨ ¨ “ er´1 “ 1 and thus r “ 1 and |F ˚| is cyclic of order pd ´ 1.
Since 0p

d
“ 0, we have that each a P F is a zero of the polynomial Xpd ´ X , so F is a

splitting field of the polynomial Xpd ´ X over Fp.
Similarly, Fpn is the splitting field of the polynomial Xpn ´X , and since F is a subfield
of Fpn , we have pXpd ´Xq | pXpn ´Xq, so by part (a), pd´1 divides pn´1. Replacing
x by p in the proof of part (a), we obtain d | n.

(c) Let d be a positive integer such that d | n. Let F be the splitting field of the polynomial
Xpd ´ X over Fp. Then by the solution of part (b), F is a field of order pd. Note
that Fpn is a splitting field of the polynomial Xpn ´ X over Fp. Since d | n implies
pd ´ 1 | pn ´ 1, by part (a) we have that Xpd ´ X divides Xpn ´ X . Hence F is an
intermediate field Fp Ď F Ď Fpn .
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