Solutions Exercise sheet 7

1. Let L : K be a splitting field of a separable polynomial $f(x) \in K[x]$ of degree n. Show that if f is irreducible then n divides |Gal(L : K)|.

Solution:

Let $\alpha \in$ be a root of f. Since f is irreducible, $[K(\alpha) : K] = n$. On the other hand since L : K is a splitting field of f, |Gal(L : K)| = [L : K]. Together with $[L : K] = [L : K(\alpha)][K(\alpha) : K]$ this implies n||Gal(L : K)|.

2. Let p be a prime and \mathbb{F}_{p^n} be the finite field of p^n elements. Show that $\operatorname{Gal}(\mathbb{F}_{p^n} : \mathbb{F}_p)$ is isomorphic to $\mathbb{Z}/n\mathbb{Z}$ and a generator is given by the Frobenius homomorphism $\varphi : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ where $\varphi(x) = x^p$.

Solution:

We have seen that \mathbb{F}_{p^n} is the splitting field of the separable polynomial $x^{p^x} - x$. Hence using Theorem 3.5 we have that $|\text{Gal}(\mathbb{F}_{p^n} : \mathbb{F}_p)| = [\mathbb{F}_{p^n} : \mathbb{F}_p] = n$.

Clearly the Frobenius homomorphism is in $\operatorname{Gal}(\mathbb{F}_{p^n} : \mathbb{F}_p)$. We claim that the order of φ is equal to n. Suppose its order is $k \leq n$. Then $\varphi^k = \operatorname{Id}_{\mathbb{F}_{p^n}}$. Since $\varphi^k(x) = x^{p^k}$, this means that every $x \in \mathbb{F}_{p^n}$ satisfies $x^{p^k} - x = 0$ Hence $p^n \leq p^k$ which in return implies that k = n.

3. For $p^r = 8, 9, 16$ find the minimal polynomial over \mathbb{F}_p of a generator of $\mathbb{F}_{p^r}^{\times}$.

Solution: Let $p^r = 8$. By checking that none of the elements in \mathbb{F}_2 are a zero of $X^3 + X + 1$, we conclude that the polynomial is irreducible over \mathbb{F}_2 , as it has degree 3.

Since $X^3 + X + 1$ is an irreducible polynomial of degree 3 over \mathbb{F}_2 , $\mathbb{F}_8 \cong \mathbb{F}_2[X]/(X^3 + X + 1)$ follows. In addition, \mathbb{F}_8^{\times} is cyclic of order 7, so every element different from 1 is a generating element. For example, we can choose the image of X in $\mathbb{F}_2[X]/(X^3 + X + 1)$ as a generating element. Its minimal polynomial is then $X^3 + X + 1$.

Let $p^r = 9$. Then \mathbb{F}_9 is isomorphic to $\mathbb{F}_3[X]/(X^2 + 1)$, since $X^2 + 1$ is an irreducible polynomial of degree 2 over \mathbb{F}_3 . A \mathbb{F}_3 -basis of \mathbb{F}_9 is therefore $\{1, a\}$ with $a^2 = -1$. Since \mathbb{F}_9^{\times} is cyclic of order 8, we are looking for an element of order 8. The elements of orders 1, 2 and 4 are 1, -1 and $\pm a$ respectively. Thus, for example, a + 1 can only have the order 8. (We can also calculate this directly using $(a + 1)^2 = 2a$ and $(a + 1)^4 = (2a)^2 = -4 = -1 \neq 1$). Because $(a + 1)^2 + (a + 1) - 1 = 0$ and $a + 1 \notin \mathbb{F}_3$, $X^2 + X - 1$ is the minimal polynomial of a + 1 over \mathbb{F}_3 .

Let $p^r = 16$. The polynomial $X^4 + X + 1$ is irreducible of degree 4 over \mathbb{F}_2 : checking all zeros in \mathbb{F}_2 shows that there are no linear factors. The only irreducible polynomial of degree 2 in $\mathbb{F}_2[X]$ is $X^2 + X + 1$, and since $(X^2 + X + 1)^2 = X^4 + X^2 + 1 \neq X^4 + X + 1$, we obtain that $X^4 + X + 1$ is irreducible over \mathbb{F}_2 .

Hence $\mathbb{F}_{16} = \mathbb{F}_2(a)$ for an element *a* with minimal polynomial $X^4 + X + 1$ over \mathbb{F}_2 . Since \mathbb{F}_{16}^{\times} is cyclic of order $16 - 1 = 3 \cdot 5$, *a* itself is a generator unless $a^3 = 1$ or $a^5 = 1$. In this

case, a would be a zero of $X^3 - 1$ or $X^5 - 1 = (X - 1)(X^4 + X^3 + X^2 + X + 1)$, whereas, for degree reasons, the degrees of each of these polynomials is coprime to the degree of the irreducible polynomial $X^4 + X + 1$. So this cannot be the case, and a is a generator of \mathbb{F}_{16}^{\times} with the minimum polynomial $X^4 + X + 1$.

- 4. Let n be a positive integer. Let p be a prime number and let K be a finite field of order p^n . Prove:
 - (a) If p = 2, then each element of K is a square. (*Hint:* Consider the Frobenius homomorphism)
 - (b) Each element of K can be written as a sum of two squares.
 - (c) For p > 2, we have that -1 is a square in K if and only if $p^n \equiv 1 \pmod{4}$.

Solution:

- (a) For p = 2 consider the Frobenius endomorphism $\operatorname{Frob}_p : x \mapsto x^2$ on the finite field K. Since any finite field extension over a finite field is separable, Frob_p is injective. Since k is finite, it is moreover bijective, and we obtain our claim.
- (b) Let Q := {a² | a ∈ K} be the set of all squares in K. This is the union of {0} with the image of the homomorphism K[×] → K[×], x ↦ x². The kernel of this homomorphism is {±1} and therefore has order ≤ 2. The image of the homomorphism therefore has order ≥ pⁿ-1/2. Thus |Q| ≥ pⁿ+1/2 applies.

For each $x \in K$ now consider the set $x - Q := \{x - q \mid q \in Q\}$. For this, $|x - Q| \ge \frac{p^n + 1}{2}$ applies again, and we obtain

$$|Q \cap (x - Q)| = |Q| + |x - Q| - |Q \cup (x - Q)| \ge \frac{p^n + 1}{2} + \frac{p^n + 1}{2} - |K| \ge 1.$$

So $Q \cap (x - Q)$ is not empty. Thus $a, b \in K$ exist with $b^2 = x - a^2$, or in other words $x = a^2 + b^2$.

- (c) Because $p > 2, -1 \neq 1$ is an element of K, and because $(-1)^2 = 1, -1$ is an element of order 2 in K^{\times} . Now, K^{\times} is cyclic of order $p^n 1$ and therefore isomorphic to $\mathbb{Z}/(p^n-1)\mathbb{Z}$. Moreover, the element $-1 \in K^{\times}$ corresponds to the residue class $\left[\frac{p^n-1}{2}\right] \in \mathbb{Z}/(p^n-1)\mathbb{Z}$ for every isomorphism. Thus -1 is a square in K if and only if $\left[\frac{p^n-1}{2}\right] \in \mathbb{Z}/(p^n-1)\mathbb{Z}$ is a multiple of 2. This is the case if $\frac{p^n-1}{2}$ is even, i.e. if $p^n \equiv 1 \mod 4$.
- 5. Let p > 2 be a prime number. Prove that p can be written as a sum of two squares in \mathbb{Z} if and only if $p \equiv 1 \pmod{4}$.

Hint: Look at the prime factorization of p in $\mathbb{Z}[i]$. See also Exercise sheet 1, question 3.

Solution: We already know that $\mathbb{Z}[i] = \mathbb{Z} + \mathbb{Z} \cdot i$, and according to Exercise sheet 1, this is a Euclidean ring with multiplicative norm function $N(a + bi) := a^2 + b^2$. In particular, it is factorial. Furthermore, the following holds:

$$\mathbb{Z}[i]^{\times} = \{ x \in \mathbb{Z}[i] \mid N(x) = 1 \} = \{ \pm 1, \pm i \}.$$

First let $p \equiv 1 \pmod{4}$. According to exercise 4. (c) above, $-1 \in \mathbb{F}_p^{\times}$ is a square. Therefore $c \in \mathbb{Z}$ exists with $p|(c^2 + 1)$. On the other hand, $c \pm i \notin p \cdot \mathbb{Z}[i]$ and therefore $p \nmid (c \pm i)$. Because $c^2 + 1 = (c + i)(c - i)$, p is not a prime element in $\mathbb{Z}[i]$. Since it is also not a unit and $\mathbb{Z}[i]$ is factorial, p therefore has a prime factorization of length > 1.

Write p = ef with non-units $e, f \in \mathbb{Z}[i]$. Then $N(e) \cdot N(f) = N(ef) = N(p) = p^2$ and N(e), N(f) > 1, which is only possible with N(e) = p. If we write e = a + bi with $a, b \in \mathbb{Z}$, we now get $p = N(e) = a^2 + b^2$, so p is a sum of two squares as desired.

Now let $p \equiv 3 \pmod{4}$. According to Exercise sheet 1, p is then prime in $\mathbb{Z}[i]$. If there existed $a, b \in \mathbb{Z}$ with $a^2 + b^2 = p$, then (a + ib)(a - ib) = p would be a factorization of p. Since N(a + ib) = N(a - ib) = p would apply, both factors would not be units, which yields a contradiction.