Solutions Exercise sheet 7

1. Let L : K be a splitting field of a separable polynomial $f(x) \in K[x]$ of degree n. Show that if f is irreducible then n divides $|\operatorname{Gal}(L: K)|$.

Solution:

Let $\alpha \in$ be a root of f. Since f is irreducible, $[K(\alpha): K]=n$. On the other hand since $L: K$ is a splitting field of $f,|\operatorname{Gal}(L: K)|=[L: K]$. Together with $[L: K]=[L:$ $K(\alpha)][K(\alpha): K]$ this implies $n \| \operatorname{Gal}(L: K) \mid$.
2. Let p be a prime and $\mathbb{F}_{p^{n}}$ be the finite field of p^{n} elements. Show that $\operatorname{Gal}\left(\mathbb{F}_{p^{n}}: \mathbb{F}_{p}\right)$ is isomorphic to $\mathbb{Z} / n \mathbb{Z}$ and a generator is given by the Frobenius homomrphism $\varphi: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p^{n}}$ where $\varphi(x)=x^{p}$.

Solution:

We have seen that $\mathbb{F}_{p^{n}}$ is the splitting field of the separable polynomial $x^{p^{x}}-x$. Hence using Theorem 3.5 we have that $\left|\operatorname{Gal}\left(\mathbb{F}_{p^{n}}: \mathbb{F}_{p}\right)\right|=\left[\mathbb{F}_{p^{n}}: \mathbb{F}_{p}\right]=n$.
Clearly the Frobenius homomorphism is in $\operatorname{Gal}\left(\mathbb{F}_{p^{n}}: \mathbb{F}_{p}\right)$. We claim that the order of φ is equal to n. Suppose its order is $k \leqslant n$. Then $\varphi^{k}=\operatorname{Id}_{\mathbb{F}_{p^{n}}}$. Since $\varphi^{k}(x)=x^{p^{k}}$, this means that every $x \in \mathbb{F}_{p^{n}}$ satisfies $x^{p^{k}}-x=0$ Hence $p^{n} \leqslant p^{k}$ which in return implies that $k=n$.
3. For $p^{r}=8,9,16$ find the minimal polynomial over \mathbb{F}_{p} of a generator of $\mathbb{F}_{p^{r}}^{\times}$.

Solution: Let $p^{r}=8$. By checking that none of the elements in \mathbb{F}_{2} are a zero of $X^{3}+X+1$, we conclude that the polynomial is irreducible over \mathbb{F}_{2}, as it has degree 3 .

Since $X^{3}+X+1$ is an irreducible polynomial of degree 3 over $\mathbb{F}_{2}, \mathbb{F}_{8} \cong \mathbb{F}_{2}[X] /\left(X^{3}+\right.$ $X+1)$ follows. In addition, \mathbb{F}_{8}^{\times}is cyclic of order 7 , so every element different from 1 is a generating element. For example, we can choose the image of X in $\mathbb{F}_{2}[X] /\left(X^{3}+X+1\right)$ as a generating element. Its minimal polynomial is then $X^{3}+X+1$.
Let $p^{r}=9$. Then \mathbb{F}_{9} is isomorphic to $\mathbb{F}_{3}[X] /\left(X^{2}+1\right)$, since $X^{2}+1$ is an irreducible polynomial of degree 2 over \mathbb{F}_{3}. $A \mathbb{F}_{3}$-basis of \mathbb{F}_{9} is therefore $\{1, a\}$ with $a^{2}=-1$. Since F_{9}^{\times}is cyclic of order 8 , we are looking for an element of order 8 . The elements of orders 1,2 and 4 are $1,-1$ and $\pm a$ respectively. Thus, for example, $a+1$ can only have the order 8 . (We can also calculate this directly using $(a+1)^{2}=2 a$ and $\left.(a+1)^{4}=(2 a)^{2}=-4=-1 \neq 1\right)$. Because $(a+1)^{2}+(a+1)-1=0$ and $a+1 \notin \mathbb{F}_{3}, X^{2}+X-1$ is the minimal polynomial of $a+1$ over \mathbb{F}_{3}.
Let $p^{r}=16$. The polynomial $X^{4}+X+1$ is irreducible of degree 4 over \mathbb{F}_{2} : checking all zeros in F_{2} shows that there are no linear factors. The only irreducible polynomial of degree 2 in $\mathbb{F}_{2}[X]$ is $X^{2}+X+1$, and since $\left(X^{2}+X+1\right)^{2}=X^{4}+X^{2}+1 \neq X^{4}+X+1$, we obtain that $X^{4}+X+1$ is irreducible over \mathbb{F}_{2}.
Hence $\mathbb{F}_{16}=\mathbb{F}_{2}(a)$ for an element a with minimal polynomial $X^{4}+X+1$ over \mathbb{F}_{2}. Since \mathbb{F}_{16}^{\times}is cyclic of order $16-1=3 \cdot 5, a$ itself is a generator unless $a^{3}=1$ or $a^{5}=1$. In this
case, a would be a zero of $X^{3}-1$ or $X^{5}-1=(X-1)\left(X^{4}+X^{3}+X^{2}+X+1\right)$, whereas, for degree reasons, the degrees of each of these polynomials is coprime to the degree of the irreducible polynomial $X^{4}+X+1$. So this cannot be the case, and a is a generator of \mathbb{F}_{16}^{\times} with the minimum polynomial $X^{4}+X+1$.
4. Let n be a positive integer. Let p be a prime number and let K be a finite field of order p^{n}. Prove:
(a) If $p=2$, then each element of K is a square. (Hint: Consider the Frobenius homomorphism)
(b) Each element of K can be written as a sum of two squares.
(c) For $p>2$, we have that -1 is a square in K if and only if $p^{n} \equiv 1(\bmod 4)$.

Solution:

(a) For $p=2$ consider the Frobenius endomorphism $\mathrm{Frob}_{p}: x \mapsto x^{2}$ on the finite field K. Since any finite field extension over a finite field is separable, Frob $_{p}$ is injective. Since k is finite, it is moreover bijective, and we obtain our claim.
(b) Let $Q:=\left\{a^{2} \mid a \in K\right\}$ be the set of all squares in K. This is the union of $\{0\}$ with the image of the homomorphism $K^{\times} \rightarrow K^{\times}, x \mapsto x^{2}$. The kernel of this homomorphism is $\{ \pm 1\}$ and therefore has order $\leqslant 2$. The image of the homomorphism therefore has order $\geqslant \frac{p^{n}-1}{2}$. Thus $|Q| \geqslant \frac{p^{n}+1}{2}$ applies.
For each $x \in K$ now consider the set $x-Q:=\{x-q \mid q \in Q\}$. For this, $|x-Q| \geqslant \frac{p^{n}+1}{2}$ applies again, and we obtain

$$
|Q \cap(x-Q)|=|Q|+|x-Q|-|Q \cup(x-Q)| \geqslant \frac{p^{n}+1}{2}+\frac{p^{n}+1}{2}-|K| \geqslant 1 .
$$

So $Q \cap(x-Q)$ is not empty. Thus $a, b \in K$ exist with $b^{2}=x-a^{2}$, or in other words $x=a^{2}+b^{2}$.
(c) Because $p>2,-1 \neq 1$ is an element of K, and because $(-1)^{2}=1,-1$ is an element of order 2 in K^{\times}. Now, K^{\times}is cyclic of order $p^{n}-1$ and therefore isomorphic to $\mathbb{Z} /\left(p^{n}-1\right) \mathbb{Z}$. Moreover, the element $-1 \in K^{\times}$corresponds to the residue class $\left[\frac{p^{n}-1}{2}\right] \in$ $\mathbb{Z} /\left(p^{n}-1\right) \mathbb{Z}$ for every isomorphism. Thus -1 is a square in K if and only if $\left[\frac{p^{n}-1}{2}\right] \in$ $\mathbb{Z} /\left(p^{n}-1\right) \mathbb{Z}$ is a multiple of 2 . This is the case if $\frac{p^{n}-1}{2}$ is even, i.e. if $p^{n} \equiv 1 \bmod 4$.
5. Let $p>2$ be a prime number. Prove that p can be written as a sum of two squares in \mathbb{Z} if and only if $p \equiv 1(\bmod 4)$.
Hint: Look at the prime factorization of p in $\mathbb{Z}[i]$. See also Exercise sheet 1, question 3.
Solution: We already know that $\mathbb{Z}[i]=\mathbb{Z}+\mathbb{Z} \cdot i$, and according to Exercise sheet 1 , this is a Euclidean ring with multiplicative norm function $N(a+b i):=a^{2}+b^{2}$. In particular, it is factorial. Furthermore, the following holds:

$$
\mathbb{Z}[i]^{\times}=\{x \in \mathbb{Z}[i] \mid N(x)=1\}=\{ \pm 1, \pm i\}
$$

First let $p \equiv 1(\bmod 4)$. According to exercise 4. (c) above, $-1 \in \mathbb{F}_{p}^{\times}$is a square. Therefore $c \in \mathbb{Z}$ exists with $p \mid\left(c^{2}+1\right)$. On the other hand, $c \pm i \notin p \cdot \mathbb{Z}[i]$ and therefore $p \nmid(c \pm i)$. Because $c^{2}+1=(c+i)(c-i), p$ is not a prime element in $\mathbb{Z}[i]$. Since it is also not a unit and $\mathbb{Z}[i]$ is factorial, p therefore has a prime factorization of length >1.
Write $p=e f$ with non-units $e, f \in \mathbb{Z}[i]$. Then $N(e) \cdot N(f)=N(e f)=N(p)=p^{2}$ and $N(e), N(f)>1$, which is only possible with $N(e)=p$. If we write $e=a+b i$ with $a, b \in \mathbb{Z}$, we now get $p=N(e)=a^{2}+b^{2}$, so p is a sum of two squares as desired.
Now let $p \equiv 3(\bmod 4)$. According to Exercise sheet $1, p$ is then prime in $\mathbb{Z}[i]$. If there existed $a, b \in \mathbb{Z}$ with $a^{2}+b^{2}=p$, then $(a+i b)(a-i b)=p$ would be a factorization of p. Since $N(a+i b)=N(a-i b)=p$ would apply, both factors would not be units, which yields a contradiction.

