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Solutions Exercise sheet 7

1. Let L : K be a splitting field of a separable polynomial f(z) € K[x] of degree n. Show that
if f is irreducible then n divides |Gal(L : K)]|.

Solution:

Let o € be aroot of f. Since f is irreducible, [K(«) : K| = n. On the other hand since
L : K is a splitting field of f, |Gal(L : K)| = [L : K]. Together with [L : K| = [L :
K(a)][K(«) : K] this implies n||Gal(L : K)|.

2. Let p be a prime and F,» be the finite field of p” elements. Show that Gal(F,» : F,) is
isomorphic to Z/nZ and a generator is given by the Frobenius homomrphism ¢ : Fpn — Fpn
where ¢(x) = xP.

Solution:

We have seen that IF - is the splitting field of the separable polynomial 2" — x. Hence using
Theorem 3.5 we have that |Gal(F . : F,,)| = [Fpn : F,] = n.

Clearly the Frobenius homomorphism is in Gal(IFF;» : IF,,). We claim that the order of ¢ is
equal to n. Suppose its order is k < n. Then ¢* = Idp,, . Since o*(x) = 2%" | this means that
every x € I» satisfies 27" — z = 0 Hence p" < p® which in return implies that k = n.

3. Forp" = 8,9,16 find the minimal polynomial over I, of a generator of IF ;..

Solution: Let p" = 8. By checking that none of the elements in I, are a zero of X3 + X + 1,
we conclude that the polynomial is irreducible over Iy, as it has degree 3.

Since X3 + X + 1 is an irreducible polynomial of degree 3 over Fy, Fg =~ o[ X /(X3 +
X + 1) follows. In addition, Fy is cyclic of order 7, so every element different from 1 is a
generating element. For example, we can choose the image of X in Fo[ X /(X3 + X + 1) as
a generating element. Its minimal polynomial is then X3 + X + 1.

Let p” = 9. Then Fy is isomorphic to F3[X]/(X? + 1), since X? + 1 is an irreducible
polynomial of degree 2 over F3. A F3-basis of Fy is therefore {1, a} with a*> = —1. Since
I is cyclic of order 8, we are looking for an element of order 8. The elements of orders 1, 2
and 4 are 1, —1 and +a respectively. Thus, for example, a + 1 can only have the order 8. (We
can also calculate this directly using (a + 1)? = 2a and (a + 1)* = (2a)? = —4 = —1 # 1).
Because (a + 1)+ (a+1)—1=0anda+ 1 ¢ F3, X? + X — 1 is the minimal polynomial
of a + 1 over FFs.

Let p” = 16. The polynomial X* + X + 1 is irreducible of degree 4 over [Fy: checking all
zeros in Iy shows that there are no linear factors. The only irreducible polynomial of degree
2inFo[X]is X?+ X + 1,andsince (X2 + X +1)? = X'+ X2+ 1 # X'+ X +1, we
obtain that X% + X + 1 is irreducible over 5.

Hence 15 = 5(a) for an element a with minimal polynomial X 4+ X + 1 over Fs,. Since
[y is cyclic of order 16 — 1 = 3 - 5, a itself is a generator unless a® = 1 or @® = 1. In this
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case, a would be a zero of X3 —1or X° —1 = (X —1)(X*+ X?+ X2+ X + 1), whereas,
for degree reasons, the degrees of each of these polynomials is coprime to the degree of the
irreducible polynomial X% + X + 1. So this cannot be the case, and a is a generator of I}
with the minimum polynomial X* 4+ X + 1.

Let n be a positive integer. Let p be a prime number and let K be a finite field of order p™.
Prove:

(a) If p = 2, then each element of K is a square. (Hint: Consider the Frobenius homomor-
phism)

(b) Each element of K can be written as a sum of two squares.

(c) Forp > 2, we have that —1 is a square in K if and only if p” = 1 (mod 4).
Solution:

(a) For p = 2 consider the Frobenius endomorphism Frob, : z — 22 on the finite field K.
Since any finite field extension over a finite field is separable, Frob, is injective. Since
k is finite, it is moreover bijective, and we obtain our claim.

(b) LetQ := {a®| a € K} be the set of all squares in K. This is the union of {0} with the
image of the homomorphism K> — K*, z — x?. The kernel of this homomorphism
is {+1} and therefore has order < 2. The image of the homomorphism therefore has
order > P21 Thus |Q| > 25 applies.

For each z € K now consider the set 7 — @ := {x—q | ¢ € Q}. For this, [z — Q| > £
applies again, and we obtain

QN (z—Q) = [Q+|z—Q|-|1Qu (z—Q)| > B + 21 —|K| > 1.

So Q N (z — Q) is not empty. Thus a, b € K exist with b?> = 2 — a?, or in other words
r=a®+ .

(c) Because p > 2, —1 # 1 is an element of K, and because (—1)? = 1, —1 is an element
of order 2 in K*. Now, K~ is cyclic of order p” — 1 and therefore isomorphic to
Z/(p"—1)Z. Moreover, the element —1 € K corresponds to the residue class [Z] €
Z/(p" — 1)Z for every isomorphism. Thus —1 is a square in K if and only if [’%] €
Z/(p" — 1)Z is a multiple of 2. This is the case if ’% iseven, i.e.if p" =1 mod 4.

Let p > 2 be a prime number. Prove that p can be written as a sum of two squares in Z if and
onlyif p=1 (mod 4).

Hint: Look at the prime factorization of p in Z[i]. See also Exercise sheet 1, question 3.

Solution: We already know that Z[i| = Z + Z - i, and according to Exercise sheet 1, this is
a Euclidean ring with multiplicative norm function N (a + bi) := a* + b?. In particular, it is
factorial. Furthermore, the following holds:

Z[i]* = {ze Z[i] | N(z) = 1} = {+1,+i}.



Firstlet p =1 (mod 4). According to exercise 4. (c) above, —1 € I’ is a square. Therefore
c € Z exists with p|(c? + 1). On the other hand, ¢ i ¢ p - Z[i] and therefore p 1 (c £ i).
Because ¢ + 1 = (¢ + i)(c — 1), p is not a prime element in Z[7]. Since it is also not a unit
and Z|[i] is factorial, p therefore has a prime factorization of length > 1.

Write p = ef with non-units e, f € Z[i]. Then N(e) - N(f) = N(ef) = N(p) = p* and
N(e), N(f) > 1, which is only possible with N (e) = p. If we write ¢ = a +bi with a,b € Z,
we now get p = N(e) = a® + b?, so p is a sum of two squares as desired.

Now let p = 3 (mod 4). According to Exercise sheet 1, p is then prime in Z[i]. If there
existed a,b € 7 with a® + b* = p, then (a + ib)(a — ib) = p would be a factorization of
p. Since N(a + ib) = N(a — ib) = p would apply, both factors would not be units, which
yields a contradiction.



