
D-MATH Algebra II FS 2024
Prof. Dr. Özlem Imamoglu

Solutions Exercise sheet 8

1. Recall that a normal closure of an extention L : K is the smallest extention of L which is
normal over K. Let L : K be a finite extention. Show that there exists a normal closure N
of L : K which is a finite extention of K and that if M is another normal closure than the
extentions M : K and N : K are isomorphic.

Hint: Let α1, . . . αn be a basis of L over K with minimal polynomials mi “ mαi,K and
consider the splitting field of the polynomial m1m2 . . .mn.

Solution:

Let α1, . . . , αr be a basis for L over K, and let mj be the minimal polynomial of αj over K.
Let N be the splitting field for f “ m1m2 . . .mr over L. Then N is also the splitting field
for f over K, so N : K is normal and finite by Theorem 2.24 from the lectures. Suppose
that L Ď P Ď N where P : K is normal. Each polynomial mj has a zero αj P P , so by
normality f splits in P . Since N is the splitting field for f , we have P “ N . Therefore N is
a normal closure.

Now suppose that M and N are both normal closures. The above polynomial f splits in M
and in N , so each of M and N contain the splitting field for f over K. This splitting field
contains L and is normal over K, so it must be equal to both M and N .

2. Let L : K be a finite extention. Show that the following are equivalent

(a) L : K is normal

(b) For every finite extention M of K containing L, every K-monomorphism φ : L Ñ M
is a K-automorphism of L.

(c) There exists a finite normal extention N of K containing L such that every every K-
monomorphism φ : L Ñ N is a K-automorphism of L.

Solution:

We show that 2.a ñ 2.b ñ 2.c ñ 2.a.

(2.a ñ 2.b) If L : K is normal then L is the normal closure of L : K.

Claim. We have φpLq Ď L.

Let a P L. Let m be the minimal polynomial of a over K. Then mpaq “ 0, so φpmpaqq “ 0.
But φpmpaqq “ mpφpaqq, since φ is a K-monomorphism, so mpφpaqq “ 0 and φpaq is a
zero of m. Therefore φpaq lies in L since L : K is normal and we obtain our claim.

But φ is a K-linear map defined on the finite-dimensional vector space L over K, and it is a
monomorphism. Therefore φpLq has the same dimension as L, whence φpLq “ L and φ is
a K-automorphism of L.

(2.b ñ 2.c) Let N be the normal closure for L : K. Then N exists by Exercise 1., and has
the requisite properties by 2.b.
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(2.c ñ 2.a) Suppose that f is any irreducible polynomial over K with a zero α P L. Then
f splits over N by normality, and if β is any zero of f in N , then by Lemma 3.2 from the
lectures, there exists an automorphism σ of N such that σpαq “ β. By hypothesis, σ is a
K-automorphism of L, so β “ σpαq P σpLq “ L. Therefore f splits over L and L : K is
normal.

3. Let L : K be a separable, finite extention of degree n. Show that there are exactly n K-
monomorphisms of L into a normal closure N .

Solution:

Use induction on rL : Ks. If rL : Ks “ 1, then the result is clear. Suppose that rL : Ks “

k ą 1. Let α P LzK with minimal polynomial m over K. Then

degm “ rKpαq : Ks “ r ą 1

Now m is an irreducible polynomial over a subfield of C with one zero in the normal extensi-
on N , so m splits in N and its zeros α1, . . . , αr are distinct. By induction there are precisely
s distinct Kpαq-monomorphisms ρ1, . . . , ρs : L Ñ N , where s “ rL : Kpαqs “ k{r. By
Lemma 3.2 from the lectures, there are r distinct K-automorphisms τ1, . . . , τr of N such
that τipαq “ αi. The maps

φij “ τiρj p1 ď i ď r, 1 ď j ď sq

are K-monomorphisms L Ñ N .

We claim they are distinct. Suppose φij “ φkl. Then τ´1
k τi “ ρlρ

´1
j . The ρj fix Kpαq, so

they map α to itself. But ρj is defined by its action on α, so ρlρ
´1
j is the identity. That is,

ρl “ ρj . So τ´1
k τi is the identity, and τk “ τi. Therefore i “ k, j “ l, so the φij are distinct.

They therefore provide rs “ k distinct K-monomorphisms L Ñ N .

Finally, we show that these are all of the K-monomorphisms L Ñ N . Let τ : L Ñ N be
a K-monomorphism. Then τpαq is a zero of m in N , so τpαq “ αi for some i. The map
φ “ τ´1

i τ is a Kpαq-monomorphism L Ñ N , so by induction φ “ ρj for some j. Hence
τ “ τiρj “ φij and we are done.

4. Show that x4 ` 1 is irreducible in Zrxs but reducible in Fprxs for every prime p.

Solution:

As we have already seen in class that

px ` 1q
4

` 1 “ x4
` 4x3

` 6x2
` 4x ` 2

is irreducible by Eisenstein Criteria, and hence x4 ` 1 is irreducible in Zrxs.

Consider the polynomial x4 ` 1 over Fprxs. If p “ 2 then x4 ` 1 “ px ` 1q4, hence clearly
reducible.

If p is an odd prime, then p2 ´ 1 is divisible by 8, since p is congruent to 1, 3, 5 or 7 mod 8
and all of these are squares mod 8. Hence xp2´1 is divisible by x8 ´ 1.
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This gives the divisibilities

x4
` 1 | x8

´ 1 | xp2´1
´ 1 | xp2

´ x.

Therefore all the roots of x4 ` 1 are roots of xp2 ´ x. Since the roots of xp2 ´ x are the
elements of the field Fp2 , it follows that the field extention generated by any root of x4 ` 1
is at most degree 2 over Fp, which means x4 ` 1 cannot be irreducible over Fp.

5. Let L be the splitting field of the polynomial x4 ` 1 over Q and let G “ GalpL : Qq be its
Galois group. Determine G and the fixed fields corresponding to each of its subgroups.

Solution: We will start by determinining the splitting field of the polynomial x4 ` 1 over Q.
Let ζ :“ eπi{4 “ i`1?

2
P C be the primitive 8-th root of unity. Then the polynomial x4 ` 1

has the four zeros ζ˘1, ζ˘3, and thus the splitting field L “ Qpζq. Since ζ2 “ i, we have
L “ Qpi,

?
2q. Since Qp

?
2q is contained in R, we have rQpi,

?
2q : Qp

?
2qs “ 2, and

together with rQp
?
2q : Qs “ 2 we obtain rL : Qs “ rQpi,

?
2q : Qp

?
2qsrQp

?
2q : Qs “ 4.

Next, we will determine the Galois group. Since L “ Qpζq, each element of the Galois
group is determined by the image of ζ . Hence G “ GalpL : Qq operates transitively on
the set of zeros tζ˘1, ζ˘3u. Let σ, φ P G be such that σpζq “ ζ´1 and φpζq “ ζ´3. Since
p´1q2 ” p´3q2 ” 1 pmod 8q, we have

σ2
pζq “ φ2

pζq “ ζ,

and thus σ2 “ φ2 “ 1. Hence there are two distinct cyclic subgroups of order 2 in G, and
since |G| “ 4, we have that G is a product of two cyclic groups of order 2, so isomorphic to
Z{2ZˆZ{2Z. It has subgroups xσy, xφy, xσφy of order 2 together with the trivial subgroup.

Now we can determine the fixed fields corresponding to each of the subgroups. From the
lectures we know that Lxidy “ L and LG “ Q.

Since φpiq “ φpζ2q “ ζ10 “ ζ2 “ i, we have that φ operates trivially on the intermediate
field Qpiq. Hence Qpiq Ă Lxφy, so rLxφy : Qs ě 2. Since Lxφy Ĺ L as φpζq ‰ ζ , we have that
rLxφy : Qs ă 4, so Qpiq “ Lxφy.

From ζ´1 “ 1´i?
2

we obtain ζ ` ζ´1 “
?
2, which implies σp

?
2q “ σpζq ` σpζ´1q “

ζ´1 ` ζ “
?
2. Hence Qp

?
2q Ă Lxσy. Similarly as above, we can use a degree argument to

conclude that Lxσy “ Qp
?
2q.

From σφpζq “ ζ´5 “ ζ3 and pζ3q3 “ ζ9 “ ζ , we obtain that σφ interchanges the two zeros
ζ and ζ3. Hence ζ ` ζ3 is invariant under σφ. From ζ3 “ ´1`i?

2
we obtain that ζ ` ζ3 “ i

?
2,

so that Qpi
?
2q Ď Lxσφy Ĺ L. Note that rQpi

?
2q : Qs “ 2, so a similar degree argument as

above implies that Lxσφy “ Qpi
?
2q.

Overall, this results in the following list of subgroups of G and their corresponding interme-
diate fields:

xidy

xσy xσφy xφy

G

L

Qp
?
2q Qpi

?
2q Qpiq

Q
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