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1. Recall that a normal closure of an extention L : K is the smallest extention of L which is
normal over K. Let L : K be a finite extention. Show that there exists a normal closure N
of L : K which is a finite extention of X and that if M is another normal closure than the
extentions M : K and N : K are isomorphic.

Hint: Let o, ..., be a basis of L over K with minimal polynomials m; = m,, x and
consider the splitting field of the polynomial mims ... m,.

Solution:

Let oy, ..., . be abasis for L over K, and let m; be the minimal polynomial of «; over K.
Let NV be the splitting field for f = mymy ... m, over L. Then N is also the splitting field
for f over K, so N : K is normal and finite by Theorem 2.24 from the lectures. Suppose
that L < P < N where P : K is normal. Each polynomial m; has a zero a; € P, so by
normality f splits in P. Since N is the splitting field for f, we have P = N. Therefore N is
a normal closure.

Now suppose that M and N are both normal closures. The above polynomial f splits in M
and in N, so each of M and N contain the splitting field for f over K. This splitting field
contains L and is normal over K, so it must be equal to both M and N.

2. Let L : K be a finite extention. Show that the following are equivalent

(a) L : K isnormal

(b) For every finite extention M of K containing L, every K-monomorphism ¢ : L — M
is a K -automorphism of L.

(c) There exists a finite normal extention /N of K containing L such that every every K-
monomorphism ¢ : L — N is a K-automorphism of L.

Solution:

We show that 2.a = 2.b = 2.c = 2.a.

(2.a = 2.b) If L : K is normal then L is the normal closure of L : K.

Claim. We have (L) < L.

Let a € L. Let m be the minimal polynomial of a over K. Then m(a) = 0, so ¢(m(a)) = 0.
But ¢(m(a)) = m(p(a)), since ¢ is a K-monomorphism, so m(p(a)) = 0 and ¢(a) is a
zero of m. Therefore p(a) lies in L since L : K is normal and we obtain our claim.

But ¢ is a K-linear map defined on the finite-dimensional vector space L over K, and it is a

monomorphism. Therefore (L) has the same dimension as L, whence ¢(L) = L and ¢ is
a K -automorphism of L.

(2.0 = 2.c) Let N be the normal closure for L : K. Then N exists by Exercise 1., and has
the requisite properties by 2.b.



(2.c = 2.a) Suppose that f is any irreducible polynomial over K with a zero o € L. Then
f splits over N by normality, and if [ is any zero of f in N, then by Lemma 3.2 from the
lectures, there exists an automorphism o of N such that o(«) = (. By hypothesis, o is a
K -automorphism of L, so 5 = o(a) € o(L) = L. Therefore f splits over L and L : K is
normal.

Let L : K be a separable, finite extention of degree n. Show that there are exactly n K-
monomorphisms of L into a normal closure N.

Solution:

Use induction on [L : K|. If [L : K| = 1, then the result is clear. Suppose that [L : K] =
k > 1.Let « € L\ K with minimal polynomial m over K. Then

degm = [K(a): K]=r>1

Now m is an irreducible polynomial over a subfield of C with one zero in the normal extensi-

on N, so m splits in N and its zeros ay, . . . , a,. are distinct. By induction there are precisely
s distinct K («)-monomorphisms py,...,ps : L — N, where s = [L : K(«a)] = k/r. By
Lemma 3.2 from the lectures, there are r distinct /K -automorphisms 7y,..., 7. of N such

that 7;(«) = ;. The maps
vij=Tip; (1<i<r,1<j<s)

are K -monomorphisms L — N.

We claim they are distinct. Suppose ¢;; = @g. Then 7,7 '7; = pip;'. The p; fix K(«), so
they map « to itself. But p; is defined by its action on a, so p pj’1 is the identity. That is,
pr = pj. S0 T, L7, is the identity, and 7, = 7;. Therefore i = k,j = [, so the ;; are distinct.
They therefore provide rs = k distinct K-monomorphisms L. — N.

Finally, we show that these are all of the K-monomorphisms L — N.Let7 : L — N be
a K-monomorphism. Then 7(«) is a zero of m in N, so 7(a) = «; for some i. The map
¢ = 7, '7 is a K(a)-monomorphism L — N, so by induction ¢ = p; for some j. Hence
T = T;p; = @i; and we are done.

Show that z* + 1 is irreducible in Z[z] but reducible in F,[z] for every prime p.
Solution:

As we have already seen in class that
(z+1)*+1=2a"+42° + 62% + 42 + 2

is irreducible by Eisenstein Criteria, and hence z* + 1 is irreducible in Z[z].

Consider the polynomial z* + 1 over IF,[z]. If p = 2 then 2* + 1 = (2 + 1)*, hence clearly
reducible.

If p is an odd prime, then p® — 1 is divisible by 8, since p is congruent to 1,3,5 or 7 mod 8
and all of these are squares mod 8. Hence "' is divisible by 2® — 1.
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This gives the divisibilities

a1l a8 —1 ] 2 =1 | P -

Therefore all the roots of 2% + 1 are roots of 27° — . Since the roots of #*° — z are the
elements of the field F ., it follows that the field extention generated by any root of z* + 1
is at most degree 2 over I',, which means x2* + 1 cannot be irreducible over IF,.

Let L be the splitting field of the polynomial 2% + 1 over Q and let G = Gal(L : Q) be its
Galois group. Determine GG and the fixed fields corresponding to each of its subgroups.

Solution: We will start by determinining the splitting field of the polynomial z* + 1 over Q.
Let ¢ := ™/* = % € C be the primitive 8-th root of unity. Then the polynomial z* + 1
has the four zeros (*!, (*3, and thus the splitting field L = Q((). Since ¢? = i, we have
L = Q(i,+/2). Since Q(+/2) is contained in R, we have [Q(i,+/2) : Q(+/2)] = 2, and
together with [Q(+v/2) : Q] = 2 we obtain [L : Q] = [Q(i,v/2) : Q(v/2)][Q(v/2) : Q] = 4.
Next, we will determine the Galois group. Since L = Q((), each element of the Galois
group is determined by the image of (. Hence G = Gal(L : Q) operates transitively on
the set of zeros {¢*',(*3}. Let 0, € G be such that 0(¢) = ¢! and ¢(¢) = (3. Since
(—=1)>=(-3)? =1 (mod 8), we have
a*(¢) = ¥*(¢) = ¢,
and thus 02 = ¢? = 1. Hence there are two distinct cyclic subgroups of order 2 in G, and

since |G| = 4, we have that G is a product of two cyclic groups of order 2, so isomorphic to
7./27. x 7,/27Z.. 1t has subgroups {0 ), {p), (o) of order 2 together with the trivial subgroup.

Now we can determine the fixed fields corresponding to each of the subgroups. From the
lectures we know that L4 = [ and LE = Q.

Since ¢(i) = ¢(¢%) = ¢1° = (? = 1, we have that ¢ operates trivially on the intermediate
field Q(i). Hence Q(i) < L, so [L¥ : Q] = 2. Since L*’ < L as () # ¢, we have that
[ <547> Q] < 4 SO Q( ) <90>

From ("' = 7 we obtain ( + (7' = v/2, which implies (v/2) = o(¢) + o(¢7Y) =
("' 4+ ¢ = /2. Hence Q(+/2) < L. Similarly as above, we can use a degree argument to

conclude that L{7 = Q(+/2).

From op(() = (7° = (? and (¢?)? = ¢¥ = (, we obtain that o interchanges the two zeros
¢ and ¢3. Hence ¢ + (3 is invariant under o¢. From (? = % we obtain that ¢ + (* = iv/2,
so that Q(iv/2) < L¢°¥’ < L. Note that [Q(i+/2) : Q] = 2, so a similar degree argument as
above implies that L7% = Q(i/2).

Overall, this results in the following list of subgroups of GG and their corresponding interme-
diate fields:

(id) L

SN I

(o) (o) () Q(v2) Q(iv2) Q(7)

N N



