Solutions Exercise sheet 8

1. Recall that a normal closure of an extention $L: K$ is the smallest extention of L which is normal over K. Let $L: K$ be a finite extention. Show that there exists a normal closure N of $L: K$ which is a finite extention of K and that if M is another normal closure than the extentions $M: K$ and $N: K$ are isomorphic.

Hint: Let $\alpha_{1}, \ldots \alpha_{n}$ be a basis of L over K with minimal polynomials $m_{i}=m_{\alpha_{i}, K}$ and consider the splitting field of the polynomial $m_{1} m_{2} \ldots m_{n}$.
Solution:
Let $\alpha_{1}, \ldots, \alpha_{r}$ be a basis for L over K, and let m_{j} be the minimal polynomial of α_{j} over K. Let N be the splitting field for $f=m_{1} m_{2} \ldots m_{r}$ over L. Then N is also the splitting field for f over K, so $N: K$ is normal and finite by Theorem 2.24 from the lectures. Suppose that $L \subseteq P \subseteq N$ where $P: K$ is normal. Each polynomial m_{j} has a zero $\alpha_{j} \in P$, so by normality f splits in P. Since N is the splitting field for f, we have $P=N$. Therefore N is a normal closure.

Now suppose that M and N are both normal closures. The above polynomial f splits in M and in N, so each of M and N contain the splitting field for f over K. This splitting field contains L and is normal over K, so it must be equal to both M and N.
2. Let $L: K$ be a finite extention. Show that the following are equivalent
(a) $L: K$ is normal
(b) For every finite extention M of K containing L, every K-monomorphism $\varphi: L \rightarrow M$ is a K-automorphism of L.
(c) There exists a finite normal extention N of K containing L such that every every K monomorphism $\varphi: L \rightarrow N$ is a K-automorphism of L.

Solution:

We show that $\mathbf{2} . a \Rightarrow \mathbf{2} . b \Rightarrow \mathbf{2} . c \Rightarrow \mathbf{2} . a$.
$\mathbf{(2 . a} \Rightarrow \mathbf{2} . b)$ If $L: K$ is normal then L is the normal closure of $L: K$.
Claim. We have $\varphi(L) \subseteq L$.
Let $a \in L$. Let m be the minimal polynomial of a over K. Then $m(a)=0$, so $\varphi(m(a))=0$. But $\varphi(m(a))=m(\varphi(a))$, since φ is a K-monomorphism, so $m(\varphi(a))=0$ and $\varphi(a)$ is a zero of m. Therefore $\varphi(a)$ lies in L since $L: K$ is normal and we obtain our claim.

But φ is a K-linear map defined on the finite-dimensional vector space L over K, and it is a monomorphism. Therefore $\varphi(L)$ has the same dimension as L, whence $\varphi(L)=L$ and φ is a K-automorphism of L.
$(\mathbf{2} . b \Rightarrow \mathbf{2} . c)$ Let N be the normal closure for $L: K$. Then N exists by Exercise 1., and has the requisite properties by $2 . \mathrm{b}$.
(2.c $\Rightarrow \mathbf{2} . a)$ Suppose that f is any irreducible polynomial over K with a zero $\alpha \in L$. Then f splits over N by normality, and if β is any zero of f in N, then by Lemma 3.2 from the lectures, there exists an automorphism σ of N such that $\sigma(\alpha)=\beta$. By hypothesis, σ is a K-automorphism of L, so $\beta=\sigma(\alpha) \in \sigma(L)=L$. Therefore f splits over L and $L: K$ is normal.
3. Let $L: K$ be a separable, finite extention of degree n. Show that there are exactly $n K$ monomorphisms of L into a normal closure N.

Solution:

Use induction on $[L: K]$. If $[L: K]=1$, then the result is clear. Suppose that $[L: K]=$ $k>1$. Let $\alpha \in L \backslash K$ with minimal polynomial m over K. Then

$$
\operatorname{deg} m=[K(\alpha): K]=r>1
$$

Now m is an irreducible polynomial over a subfield of \mathbb{C} with one zero in the normal extension N, so m splits in N and its zeros $\alpha_{1}, \ldots, \alpha_{r}$ are distinct. By induction there are precisely s distinct $K(\alpha)$-monomorphisms $\rho_{1}, \ldots, \rho_{s}: L \rightarrow N$, where $s=[L: K(\alpha)]=k / r$. By Lemma 3.2 from the lectures, there are r distinct K-automorphisms $\tau_{1}, \ldots, \tau_{r}$ of N such that $\tau_{i}(\alpha)=\alpha_{i}$. The maps

$$
\varphi_{i j}=\tau_{i} \rho_{j} \quad(1 \leqslant i \leqslant r, 1 \leqslant j \leqslant s)
$$

are K-monomorphisms $L \rightarrow N$.
We claim they are distinct. Suppose $\varphi_{i j}=\varphi_{k l}$. Then $\tau_{k}^{-1} \tau_{i}=\rho_{l} \rho_{j}^{-1}$. The ρ_{j} fix $K(\alpha)$, so they map α to itself. But ρ_{j} is defined by its action on α, so $\rho_{l} \rho_{j}^{-1}$ is the identity. That is, $\rho_{l}=\rho_{j}$. So $\tau_{k}^{-1} \tau_{i}$ is the identity, and $\tau_{k}=\tau_{i}$. Therefore $i=k, j=l$, so the $\varphi_{i j}$ are distinct. They therefore provide $r s=k$ distinct K-monomorphisms $L \rightarrow N$.

Finally, we show that these are all of the K-monomorphisms $L \rightarrow N$. Let $\tau: L \rightarrow N$ be a K-monomorphism. Then $\tau(\alpha)$ is a zero of m in N, so $\tau(\alpha)=\alpha_{i}$ for some i. The map $\varphi=\tau_{i}^{-1} \tau$ is a $K(\alpha)$-monomorphism $L \rightarrow N$, so by induction $\varphi=\rho_{j}$ for some j. Hence $\tau=\tau_{i} \rho_{j}=\varphi_{i j}$ and we are done.
4. Show that $x^{4}+1$ is irreducible in $\mathbb{Z}[x]$ but reducible in $\mathbb{F}_{p}[x]$ for every prime p.

Solution:
As we have already seen in class that

$$
(x+1)^{4}+1=x^{4}+4 x^{3}+6 x^{2}+4 x+2
$$

is irreducible by Eisenstein Criteria, and hence $x^{4}+1$ is irreducible in $\mathbb{Z}[x]$.
Consider the polynomial $x^{4}+1$ over $\mathbb{F}_{p}[x]$. If $p=2$ then $x^{4}+1=(x+1)^{4}$, hence clearly reducible.

If p is an odd prime, then $p^{2}-1$ is divisible by 8 , since p is congruent to $1,3,5$ or $7 \bmod 8$ and all of these are squares $\bmod 8$. Hence $x^{p^{2}-1}$ is divisible by $x^{8}-1$.

This gives the divisibilities

$$
x^{4}+1\left|x^{8}-1\right| x^{p^{2}-1}-1 \mid x^{p^{2}}-x .
$$

Therefore all the roots of $x^{4}+1$ are roots of $x^{p^{2}}-x$. Since the roots of $x^{p^{2}}-x$ are the elements of the field $\mathbb{F}_{p^{2}}$, it follows that the field extention generated by any root of $x^{4}+1$ is at most degree 2 over \mathbb{F}_{p}, which means $x^{4}+1$ cannot be irreducible over \mathbb{F}_{p}.
5. Let L be the splitting field of the polynomial $x^{4}+1$ over \mathbb{Q} and let $G=\operatorname{Gal}(L: \mathbb{Q})$ be its Galois group. Determine G and the fixed fields corresponding to each of its subgroups.
Solution: We will start by determinining the splitting field of the polynomial $x^{4}+1$ over \mathbb{Q}. Let $\zeta:=e^{\pi i / 4}=\frac{i+1}{\sqrt{2}} \in \mathbb{C}$ be the primitive 8 -th root of unity. Then the polynomial $x^{4}+1$ has the four zeros $\zeta^{ \pm 1}, \zeta^{ \pm 3}$, and thus the splitting field $L=\mathbb{Q}(\zeta)$. Since $\zeta^{2}=i$, we have $L=\mathbb{Q}(i, \sqrt{2})$. Since $\mathbb{Q}(\sqrt{2})$ is contained in \mathbb{R}, we have $[\mathbb{Q}(i, \sqrt{2}): \mathbb{Q}(\sqrt{2})]=2$, and together with $[\mathrm{Q}(\sqrt{2}): \mathbb{Q}]=2$ we obtain $[L: \mathbb{Q}]=[\mathbb{Q}(i, \sqrt{2}): \mathbb{Q}(\sqrt{2})][\mathrm{Q}(\sqrt{2}): \mathbb{Q}]=4$.
Next, we will determine the Galois group. Since $L=\mathbb{Q}(\zeta)$, each element of the Galois group is determined by the image of ζ. Hence $G=\operatorname{Gal}(L: \mathbb{Q})$ operates transitively on the set of zeros $\left\{\zeta^{ \pm 1}, \zeta^{ \pm 3}\right\}$. Let $\sigma, \varphi \in G$ be such that $\sigma(\zeta)=\zeta^{-1}$ and $\varphi(\zeta)=\zeta^{-3}$. Since $(-1)^{2} \equiv(-3)^{2} \equiv 1(\bmod 8)$, we have

$$
\sigma^{2}(\zeta)=\varphi^{2}(\zeta)=\zeta
$$

and thus $\sigma^{2}=\varphi^{2}=1$. Hence there are two distinct cyclic subgroups of order 2 in G, and since $|G|=4$, we have that G is a product of two cyclic groups of order 2 , so isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. It has subgroups $\langle\sigma\rangle,\langle\varphi\rangle,\langle\sigma \varphi\rangle$ of order 2 together with the trivial subgroup.

Now we can determine the fixed fields corresponding to each of the subgroups. From the lectures we know that $L^{\text {〈id〉 }}=L$ and $L^{G}=\mathbb{Q}$.
Since $\varphi(i)=\varphi\left(\zeta^{2}\right)=\zeta^{10}=\zeta^{2}=i$, we have that φ operates trivially on the intermediate field $\mathbb{Q}(i)$. Hence $\mathbb{Q}(i) \subset L^{\langle\varphi\rangle}$, so $\left[L^{\langle\varphi\rangle}: \mathbb{Q}\right] \geqslant 2$. Since $L^{\langle\varphi\rangle} \subsetneq L$ as $\varphi(\zeta) \neq \zeta$, we have that $\left[L^{\langle\varphi\rangle}: \mathbb{Q}\right]<4$, so $\mathbb{Q}(i)=L^{\langle\varphi\rangle}$.
From $\zeta^{-1}=\frac{1-i}{\sqrt{2}}$ we obtain $\zeta+\zeta^{-1}=\sqrt{2}$, which implies $\sigma(\sqrt{2})=\sigma(\zeta)+\sigma\left(\zeta^{-1}\right)=$ $\zeta^{-1}+\zeta=\sqrt{2}$. Hence $\mathbb{Q}(\sqrt{2}) \subset L^{\langle\sigma\rangle}$. Similarly as above, we can use a degree argument to conclude that $L^{\langle\sigma\rangle}=\mathbb{Q}(\sqrt{2})$.
From $\sigma \varphi(\zeta)=\zeta^{-5}=\zeta^{3}$ and $\left(\zeta^{3}\right)^{3}=\zeta^{9}=\zeta$, we obtain that $\sigma \varphi$ interchanges the two zeros ζ and ζ^{3}. Hence $\zeta+\zeta^{3}$ is invariant under $\sigma \varphi$. From $\zeta^{3}=\frac{-1+i}{\sqrt{2}}$ we obtain that $\zeta+\zeta^{3}=i \sqrt{2}$, so that $\mathbb{Q}(i \sqrt{2}) \subseteq L^{\langle\sigma \varphi\rangle} \subsetneq L$. Note that $[\mathbb{Q}(i \sqrt{2}): \mathbb{Q}]=2$, so a similar degree argument as above implies that $L^{\langle\sigma \varphi\rangle}=\mathbb{Q}(i \sqrt{2})$.
Overall, this results in the following list of subgroups of G and their corresponding intermediate fields:

