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Solutions Exercise sheet 9

1.

(a) Letpbeaprimeand f € Q[x] an irreducible polynomial of degree p with splitting field
L. Assume that f has exactly p — 2 real roots. Show that Gal(L : Q) ~ S,,.

Hint: Make use of the following two facts from the theory of finite groups.

i. (Cauchy) If G is a finite group and p is a prime with p | |G| then G contains an
element of order p.

ii. A p—cycle (ay,ay---a,) with {a1,...a,} = {1,2,...,n} and a transposition
(a;, a;) where generate the group .S),.

(b) Show that the Galois group of z° — 4x + 2 € Q[z] is isomorphic to S
Solution:

(a) Let Q c L < C be a splitting field and {ay, ..., a,} = L be the roots of f numbered so
that {a, ..., a,} < R We view G := Gal(L : Q) as a subgroup of .S,,.

Let 0 : C — C, be the complex conjugation map where o(z) = Zz. Then o fixes each of
the real roots as, . .., o, and interchanges o and . Since L = Q(ay,...ay), o(L) = L
and 0|, € Gal(L : Q) < S, is the transposition (12), interchanging the first two roots fixing
the others. Since f is irreducible of degree p using Serie 7, question 1 we have that p | |G|.
Using (i), Cauchy’s theorem, G contains an element of order p, hence a p cycle ¢. Since p is
prime, using (ii) we see that o and ¢ then generates .S,,.

(b) Using Eisenstein criteria we see that f(z) = z° — 4z + 2 € Q[x] is irreducible. Com-
puting the local extrema we see that f has a local minimum at (4/5)"/4, a local maximum at
—(4/5)"* and that it has exactly 3 = 5 — 2 real zeroes. Applting the first part of the question
we have that the Galois group is S5.

Let L : K be a finite separable extention. Use Galois theory to show that there are finitely
many intermediate fields between L and K. Use Question 1 of Serie 6 to conclude that L : K
is simple.
Solution:

Suppose ay, . ..a, generate L over K. Let g = my, ...m,,, where m,, € K[z] is the
minimal polynomial of a; over K. Then g is separable over K. Let [V : K be a splitting field
of g over K. Since g is separable NV : K is a Galois extention. Since NV : K is a finite Galois
extention, its Galois group G is a finite group of size [N : K] and hence has finitely many
subgroups. By the fundamental theorem these subgroups are in a one to one correspondence
between intermediate fields between N and K. Since there are finitely many intermediate
fields between N and K there are also finitely many intermediate fields between L and K.

Determine the Galois group of 2% — 8 over Q.

Solution: We can factor the polynomial above as

2% — 8 = (2% — 2)(a* + 22% + 4).
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The polynomial z* + 222 + 4 has the four zeros +4/—1 =+ i+/3:

tsat vt (-1 s8) (g1 08) (2= 1= 98) (21— 0)

Considering products of pairs of linear terms above, we obtain that there is no polynomial of
degree 2 over Q dividing 2* + 222 + 4. Hence we obtain that the polynomial is irreducible
over Q.

Let K be the splitting field of 2% + 222 + 4 over Q.
Now consider the polynomial 22 — 2 = (z — v/2)(x + v/2). Since

(m+m)2 — 1421+ iVl —iVB) —1 -2,

we have \/—1 + iv/3 + v/ —1 — iv/3 = V2, so v2 € K. Hence the splitting field of 2° — 8
over Q is K. Thus the order |G| = |Gal(K : Q)| = 4.

Hence the Galois group G is isomorphic to either Z/47 or 7,/27. x 7./27., as those are the
only groups of order 4.

Claim. K = Q(in/6,/2).
We have already seen that \/—1 + i3 + \/—1 — i4/3 = /2. From

(\/—1+i\/§—\/—1—i\/§>2 = —1—2\/(—1+¢\/§)(—1—¢\/§)—1= —6,

we obtain Q(i1/6,v/2) € K.

To prove the other inclusion, we will consider the degree of Q(i\/6,+/2) over Q. Since
iv6 ¢ Q(v/2) = R and i1/6 has minimal polynomial 7% + 6 over Q(+/2), we have

[Q(iv/6,v2) : Q] = [Q(iv6,v2) : Q(v2)][Q(V2) : Q] = 4.

Hence Q(i\@, V2) =K.

Since | Gal(Q(v/2) : Q)| = 2 and | Gal(Q(iv/6) : Q)| = 2, we have Gal(Q(1/2) : Q) =
Gal(Q(iv/6) : Q) = Z/27Z. But since Q(in/6) # Q(/2), the Galois group G has 2 different
subgroups of order 2. Since the group Z /47 only has precisely one subgroup of order 2, G

can not be isomorphic to the group Z/47. Since the only other group of order 4 is Z/27., x
Z7,/27, we have G = Z,/27. x 7./2Z.

Since the group Z/27 x 7./27. has 3 different subgroups of order 2, by the Galois corre-
spondence there exists another intermediate field different from Q(i+/6) and Q(~/2).
Claim. i/3 ¢ Q(i\/6).
To prove the claim, assume on the contrary that there exist ay, as, by, by € @, where not both
b, and b, are zero, with

a1 + GQ‘Z'\/E — \/g

by + byin/6
But this is equivalent to a; + 3byv/2 = byi/3 — asin/6, which only holds if a; = —3byn/2
and ay/2 = by. But these equations have no solution in Q. Hence Q(iv/6) n Q(iv/3) = Q,
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and since Q(v/2) = R, we obtain the following tower of fields corresponding to the groups
via the Galois correspondence

Q(iv/6,4/2) 1

T T

) 7)27. 7./27, 7.)27.

Q(iv/6) Q(ivV3) Q(v2
Q

7.)27. x 7.)27. ~ G

4. Let f(X) e Q[X] be a non zero polynomial. Assume that the order of the Galois group of
f(z) over Q is odd. Prove that all zeros of f(z) are real.

Solution: Let K be the splitting field of f over Q and write G := Gal(K : Q). Note that
complex conjugation ¢ is an automorphism which is always contained in the Galois group
(. We also have that ¢* = id, and if f has at least one complex root, the splitting field &
would have complex elements and we would have ord(p) = 2. Then 2 would divide the
order |G|. Hence if the order of the Galois group is odd, complex conjugaion has to have
order one, so all roots are real.

5. Let L : K be a finite Galois extension with intermediate fields K7, K5 and corresponding
Galois groups G; := Gal(L : K;) < G := Gal(L : K). Prove:

(a) KlKQ = LGIHGQ
(b) K, n Ky = L{E12) where (G, Gy) is the subgroup of G generated by G, and G
(c) If K1Ky =L, Ki n K9 = K and the extensions K7 : K and K5 : K are both Galois,

then
Gal(L : K) = G1 X G2

Hint: If GG is a group with two normal subgroups G; and G5 such that G; N Gy = 1,
then GlGQ = G1 X GQ.

Solution:

(a) Since G; is the Galois group of L : K, it operates trivially on K;. Hence also G n G
operates trivially on both K; and K5, so G; n (G5 operates trivially on K K5. Hence
KK, c LG10G2,

On the other hand, Since Gal(L : K;K5) is a subgroup of G;, for both i = 1,2, we
have that Gal(L : K1K3) < G; n GG5. By the Fundamental theorem of Galois theory
LG"G2 - K| K,, and we obtain part (a).

(b) The group G operates trivially on K, for + = 1,2. Then G, operates trivially on

K, n K, as well. Hence (G| n Gy) operates trivially on K n Ks, so that K n Ky <
LG1.G2),

Since G; is a subgroup of (G, Gs), we have LG162 — L& = K. Thus L{G1G2 <
Kl M Kg.



(¢c) Since K; : K is Galois, by the Fundamental theorem of Galois theory we obtain G; <G,
which implies (G, G2) = G1G>. By part (b), we obtain K = K| n K, = L{GG2 =
LE1G2 g0

G1G2 = Gal(L . K) =G (1)

By part (a), we have L = K 1 Ky = LG10G2 g0 that
Gl M G2 =1 (2)

By equations (1) and (2), and the hint we have that G = G; x G,.

As for the hint, note that from Algebra I using (1) and (2) we know that G = GG is
isomorphic to the internal semidirect product of GG; and Go:

G%GINGQ.

But since both subgroups are normal, if (n, h), (n’, h') € G1 x G then in fact n’h = hn'.
Indeed we have n'hn/~'h™1 = (n/hn'~1)h™! € (W'Gon/~')Gy = G, and similarly
n'(hn'~*h=') € GihGih™' = G1. Then n’hn’*h™' e Gy n Gy = 1, so n’hn/~th™1 =
1.
Hence

(n,h)* (n',h) = (n-(hn'R™1),RK) = (nn/, hK),

so the semidirect product above is actually a direct product: G = G} x Gb.



