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1. (a) Let p be a prime and f P Qrxs an irreducible polynomial of degree p with splitting field
L. Assume that f has exactly p ´ 2 real roots. Show that GalpL : Qq » Sp.

Hint: Make use of the following two facts from the theory of finite groups.

i. (Cauchy) If G is a finite group and p is a prime with p | |G| then G contains an
element of order p.

ii. A p´cycle pa1, a2 ¨ ¨ ¨ anq with ta1, . . . anu “ t1, 2, . . . , nu and a transposition
pai, ajq where generate the group Sp.

(b) Show that the Galois group of x5 ´ 4x ` 2 P Qrxs is isomorphic to S5

Solution:

(a) Let Q Ă L Ă C be a splitting field and tαa, . . . , αnu Ă L be the roots of f numbered so
that tα3, . . . , αnu Ă RWe view G :“ GalpL : Qq as a subgroup of Sp.

Let σ : C Ñ C, be the complex conjugation map where σpzq “ z̄. Then σ fixes each of
the real roots α3, . . . , αn and interchanges α1 and α2. Since L “ Qpα1, . . . αnq, σpLq “ L
and σ|L P GalpL : Qq ă Sp is the transposition p12q, interchanging the first two roots fixing
the others. Since f is irreducible of degree p using Serie 7, question 1 we have that p | |G|.
Using (i), Cauchy’s theorem, G contains an element of order p, hence a p cycle φ. Since p is
prime, using (ii) we see that σ and φ then generates Sp.

(b) Using Eisenstein criteria we see that fpxq “ x5 ´ 4x ` 2 P Qrxs is irreducible. Com-
puting the local extrema we see that f has a local minimum at p4{5q1{4, a local maximum at
´p4{5q1{4 and that it has exactly 3 “ 5´ 2 real zeroes. Applting the first part of the question
we have that the Galois group is S5.

2. Let L : K be a finite separable extention. Use Galois theory to show that there are finitely
many intermediate fields between L and K. Use Question 1 of Serie 6 to conclude that L : K
is simple.

Solution:

Suppose a1, . . . an generate L over K. Let g “ ma1 . . .man , where mai P Krxs is the
minimal polynomial of ai over K. Then g is separable over K. Let N : K be a splitting field
of g over K. Since g is separable N : K is a Galois extention. Since N : K is a finite Galois
extention, its Galois group G is a finite group of size rN : Ks and hence has finitely many
subgroups. By the fundamental theorem these subgroups are in a one to one correspondence
between intermediate fields between N and K. Since there are finitely many intermediate
fields between N and K there are also finitely many intermediate fields between L and K.

3. Determine the Galois group of x6 ´ 8 over Q.

Solution: We can factor the polynomial above as

x6
´ 8 “ px2

´ 2qpx4
` 2x2

` 4q.
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The polynomial x4 ` 2x2 ` 4 has the four zeros ˘
a

´1 ˘ i
?
3:

x4
`2x2

`4 “

ˆ

x ´

b

´1 ` i
?
3

˙ ˆ

x `

b

´1 ` i
?
3

˙ ˆ

x ´

b

´1 ´ i
?
3

˙ ˆ

x `

b

´1 ´ i
?
3

˙

Considering products of pairs of linear terms above, we obtain that there is no polynomial of
degree 2 over Q dividing x4 ` 2x2 ` 4. Hence we obtain that the polynomial is irreducible
over Q.

Let K be the splitting field of x4 ` 2x2 ` 4 over Q.

Now consider the polynomial x2 ´ 2 “ px ´
?
2qpx `

?
2q. Since

ˆ
b

´1 ` i
?
3 `

b

´1 ´ i
?
3

˙2

“ ´1 ` 2

b

p´1 ` i
?
3qp´1 ´ i

?
3q ´ 1 “ 2,

we have
a

´1 ` i
?
3 `

a

´1 ´ i
?
3 “

?
2, so

?
2 P K. Hence the splitting field of x6 ´ 8

over Q is K. Thus the order |G| “ |GalpK : Qq| “ 4.

Hence the Galois group G is isomorphic to either Z{4Z or Z{2Z ˆ Z{2Z, as those are the
only groups of order 4.

Claim. K “ Qpi
?
6,

?
2q.

We have already seen that
a

´1 ` i
?
3 `

a

´1 ´ i
?
3 “

?
2. From

ˆ
b

´1 ` i
?
3 ´

b

´1 ´ i
?
3

˙2

“ ´1 ´ 2

b

p´1 ` i
?
3qp´1 ´ i

?
3q ´ 1 “ ´6,

we obtain Qpi
?
6,

?
2q Ď K.

To prove the other inclusion, we will consider the degree of Qpi
?
6,

?
2q over Q. Since

i
?
6 R Qp

?
2q Ă R and i

?
6 has minimal polynomial x2 ` 6 over Qp

?
2q, we have

rQpi
?
6,

?
2q : Qs “ rQpi

?
6,

?
2q : Qp

?
2qsrQp

?
2q : Qs “ 4.

Hence Qpi
?
6,

?
2q “ K.

Since |GalpQp
?
2q : Qq| “ 2 and |GalpQpi

?
6q : Qq| “ 2, we have GalpQp

?
2q : Qq –

GalpQpi
?
6q : Qq – Z{2Z. But since Qpi

?
6q ‰ Qp

?
2q, the Galois group G has 2 different

subgroups of order 2. Since the group Z{4Z only has precisely one subgroup of order 2, G
can not be isomorphic to the group Z{4Z. Since the only other group of order 4 is Z{2Z ˆ

Z{2Z, we have G – Z{2Zˆ Z{2Z.

Since the group Z{2Z ˆ Z{2Z has 3 different subgroups of order 2, by the Galois corre-
spondence there exists another intermediate field different from Qpi

?
6q and Qp

?
2q.

Claim. i
?
3 R Qpi

?
6q.

To prove the claim, assume on the contrary that there exist a1, a2, b1, b2 P Q, where not both
b1 and b2 are zero, with

a1 ` a2i
?
6

b1 ` b2i
?
6

“ i
?
3.

But this is equivalent to a1 ` 3b2
?
2 “ b1i

?
3 ´ a2i

?
6, which only holds if a1 “ ´3b2

?
2

and a2
?
2 “ b1. But these equations have no solution in Q. Hence Qpi

?
6q X Qpi

?
3q “ Q,
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and since Qp
?
2q Ă R, we obtain the following tower of fields corresponding to the groups

via the Galois correspondence

Qpi
?
6,

?
2q

Qpi
?
6q Qpi

?
3q Qp

?
2q

Q

1

Z{2Z Z{2Z Z{2Z

Z{2Zˆ Z{2Z – G

4. Let fpXq P QrXs be a non zero polynomial. Assume that the order of the Galois group of
fpxq over Q is odd. Prove that all zeros of fpxq are real.

Solution: Let K be the splitting field of f over Q and write G :“ GalpK : Qq. Note that
complex conjugation φ is an automorphism which is always contained in the Galois group
G. We also have that φ2 “ id, and if f has at least one complex root, the splitting field K
would have complex elements and we would have ordpφq “ 2. Then 2 would divide the
order |G|. Hence if the order of the Galois group is odd, complex conjugaion has to have
order one, so all roots are real.

5. Let L : K be a finite Galois extension with intermediate fields K1, K2 and corresponding
Galois groups Gi :“ GalpL : Kiq ď G :“ GalpL : Kq. Prove:

(a) K1K2 “ LG1XG2

(b) K1 X K2 “ LxG1,G2y, where xG1, G2y is the subgroup of G generated by G1 and G2

(c) If K1K2 “ L, K1 X K2 “ K and the extensions K1 : K and K2 : K are both Galois,
then

GalpL : Kq – G1 ˆ G2

Hint: If G is a group with two normal subgroups G1 and G2 such that G1 X G2 “ 1,
then G1G2 – G1 ˆ G2.

Solution:

(a) Since Gi is the Galois group of L : Ki, it operates trivially on Ki. Hence also G1 X G2

operates trivially on both K1 and K2, so G1 X G2 operates trivially on K1K2. Hence
K1K2 Ă LG1XG2 .
On the other hand, Since GalpL : K1K2q is a subgroup of Gi, for both i “ 1, 2, we
have that GalpL : K1K2q ă G1 X G2. By the Fundamental theorem of Galois theory
LG1XG2 Ă K1K2, and we obtain part (a).

(b) The group Gi operates trivially on Ki, for i “ 1, 2. Then Gi operates trivially on
K1 X K2 as well. Hence xG1 X G2y operates trivially on K1 X K2, so that K1 X K2 Ă

LxG1,G2y.
Since Gi is a subgroup of xG1, G2y, we have LxG1,G2y Ă LGi “ Ki. Thus LxG1,G2y Ă

K1 X K2.
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(c) Since Ki : K is Galois, by the Fundamental theorem of Galois theory we obtain Gi◁G,
which implies xG1, G2y “ G1G2. By part (b), we obtain K “ K1 X K2 “ LxG1,G2y “

LG1G2 , so
G1G2 “ GalpL : Kq “ G (1)

By part (a), we have L “ K1K2 “ LG1XG2 , so that

G1 X G2 “ 1 (2)

By equations (1) and (2), and the hint we have that G – G1 ˆ G2.
As for the hint, note that from Algebra I using (1) and (2) we know that G “ G1G2 is
isomorphic to the internal semidirect product of G1 and G2:

G – G1 ¸ G2.

But since both subgroups are normal, if pn, hq, pn1, h1q P G1¸G2 then in fact n1h “ hn1.
Indeed we have n1hn1´1h´1 “ pn1hn1´1qh´1 P pn1G2n

1´1qG2 “ G2, and similarly
n1phn1´1h´1q P G1hG1h

´1 “ G1. Then n1hn1´1h´1 P G1 X G2 “ 1, so n1hn1´1h´1 “

1.
Hence

pn, hq ˚ pn1, h1
q “ pn ¨ phn1h´1

q, hh1
q “ pnn1, hh1

q,

so the semidirect product above is actually a direct product: G – G1 ˆ G2.
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