Problem sheet 10

Problem 1

Prove that the hyperbolic Riemannian metric given by $\langle v, w \rangle_z := \frac{1}{y^2}(v \cdot w)$, for $z = x + i \cdot y \in \mathbb{H}$, and $v, w \in T_z \mathbb{H}$ is indeed a metric, and that it induces the same topology as does the Euclidean norm $\|\cdot\|_2$ on $\mathbb{C} \supseteq \mathbb{H}$.

Problem 2

Recall the definition of the geodesic flow on the Hyperbolic plane. Using the same notation as seen in class show the following:

Prove that if (z, \mathbf{v}) has the property that the distance between the base point of $g_t((i, i))$ and that of $g_t((z, v))$ converges to zero as $t \to \infty$, then the imaginary part of z is equal to 1, and $\mathbf{v} = i$.

Problem 3

Let $X = \{0, \frac{1}{n} \mid n \ge 1\}$ with the compact topology inherited from the reals. Since X is countable, there is a bijection $\theta: X \to \mathbb{Z}$ – we fix an arbitrary such θ .

Show that the map $T: X \to X$ defined by $T(x) = \theta^{-1}(\theta(x)+1)$ is measurable with respect to the Borel σ -algebra on X but has no invariant probability Why does this not contradict the theorem on existence of invariant measures proven in the lecture?

Problem 4

Let $X = \mathbb{T}^3$. Let $\alpha \in \mathbb{R} \setminus \mathbb{Q}$.

1. Construct a map $T: X \to X$, a function $f: X \to \mathbb{R}$ and a point $x_0 \in X$ such that

 $f(T^n x_0) = \{n^3 \alpha\} \quad \text{for all } n \ge 1.$

Here $\{\cdot\}$ denotes the fractional part. Hint: similar as in Furstenberg's Theorem

2. Let p(x) be any polynomial of degree 3. Construct a map $T: X \to X$, a function $f: X \to \mathbb{R}$ and a point $x_0 \in X$ such that

$$f(T^n x_0) = \{p(n)\alpha\} \text{ for all } n \ge 1.$$

D-MATH	Dynamical Systems and	ETH Zürich
Prof. M. Einsiedler	Ergodic Theory	FS2024

Problem 5

Show that a surjective homomorphism $T: X \to X$ of a compact group X – that is a group X which is equipped with a topology, such that X seen as a topological space is compact – is uniquely ergodic if and only if |X| = 1.