D-MATH	Dynamical Systems and	ETH Zürich
Prof. M. Einsiedler	Ergodic Theory	FS2024

Problem sheet 2

Problem 1

Prove that the doubling map $x \mapsto 2 x \bmod 1$ is topologically mixing.

Problem 2

Let $T: \mathbb{T}^{1} \rightarrow \mathbb{T}^{1}$ be the tripling map $x \mapsto 3 x \bmod 1$. Consider the Cantor set

$$
C:=\left\{\sum_{i=1}^{\infty} \frac{a_{i}}{3^{i}}: a_{i} \in\{0,2\}\right\} .
$$

(a) Show that $T^{n}(x) \in C$ for any $x \in C$ and $n \in \mathbb{N}$.
(b) Show that there exists $x \in \mathbb{T}$ with $\overline{\mathcal{O}^{+}(x)}$ uncountable but not \mathbb{T}, where $\mathcal{O}^{+}(x)$ is the forward orbit $\left\{T^{n}(x): n \in \mathbb{N}\right\}$.

Problem 3

Let $p \geq 2$ and let $T_{p}: \mathbb{T}^{1} \rightarrow \mathbb{T}^{1}$ be the $\times p \operatorname{map} x \mapsto p x \bmod 1$. For $x_{0}=\sum_{k=1}^{\infty} \frac{1}{p^{k!}}$ show that $\overline{\mathcal{O}^{+}\left(x_{0}\right)}$ is countable but not finite.

Problem 4

Let X_{1} and X_{2} be compact metric spaces and $T_{1}: X_{1} \rightarrow X_{1}$ and $T_{2}: X_{2} \rightarrow$ X_{2}. Consider the space $X=X_{1} \times X_{2}$ with metric

$$
d_{X}\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right):=\max \left(d_{X_{1}}\left(x_{1}, y_{1}\right), d_{X_{2}}\left(x_{2}, y_{2}\right)\right)
$$

and the map $T: X \rightarrow X:\left(x_{1}, x_{2}\right) \rightarrow\left(T_{1}\left(x_{1}\right), T_{2}\left(x_{2}\right)\right)$.
(a) Show that if T_{1} and T_{2} are topologically mixing, then T is also topologically mixing.
(b) Is (a) true for "topologically transitive"?

Problem 5

Consider the dynamical system $T: X \rightarrow X$ for a compact metric space X. For a subset $S \subseteq X$ we define the ω-limit of S as

$$
\omega^{+}(S)=\left\{\lim _{k \rightarrow \infty} T^{n_{k}}\left(y_{k}\right) \mid y_{k} \in S, n_{k} \nearrow \infty\right\} .
$$

(a) Prove that $\omega^{+}(S)$ is T-invariant,
(b) Prove that $\omega^{+}(S)$ is closed.
(c) Find an example of a dynamical system, where

$$
\overline{\bigcup_{x \in S} \omega^{+}(x)} \neq \omega^{+}(S) .
$$

Which inclusion does always hold?

Problem 6

Let $T: \mathbb{T}^{1} \rightarrow \mathbb{T}^{1}$ be the map

$$
T(x):= \begin{cases}0 & \text { if } x=0,1 \\ n x-1 & \text { if } x \in\left[\frac{1}{n}, \frac{1}{n-1}\right), n \geq 2\end{cases}
$$

(a) Show that for $x \in \mathbb{Q}$ there exists $n \in \mathbb{N}$ with $T^{n}(x)=0$.
(b) Show that for $x \in \mathbb{R} \backslash \mathbb{Q}$ we have $T^{n}(x) \neq 0$ for all $n \in \mathbb{N}$.
(c) Show that e is irrational using this dynamical system.

