Problem 1

Let

$$
A_{1}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \quad \text { and } \quad A_{2}=\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

(a) Draw the corresponding graphs $G_{A_{1}}$ and $G_{A_{2}}$.
(b) Investigate whether A_{i} 's are connected and aperiodic.
(c) Investigate whether the corresponding maps $S_{i}: \Omega_{A_{i}} \rightarrow \Omega_{A_{i}}$ on the vertex shift are topologically transitive and topologically mixing.

Problem 2

Let A be the adjacency matrix of a finite graph and let $S: \Omega_{A} \rightarrow \Omega_{A}$ be the corresponding map on the vertex shift. Show that for any $n \in \mathbb{N}$ the cardinality of the set of $x \in \Omega_{A}$ with $S^{n}(x)=x$ is exactly the trace $\operatorname{Tr}\left(A^{n}\right)$.

Problem 3

Prove that the odd shift $X_{\text {odd }} \subset\{0,1\}^{\mathbb{Z}}$ is sofic but not of finite type, where $X_{\text {odd }}$ is the set of $x \in\{0,1\}^{\mathbb{Z}}$ such that any two 1 's in the sequence are separated by an odd number of 0 's.

Problem 4

Let \mathcal{W} denote the set of words in 0 and 1 . For $w=i_{1} \cdots i_{l} \in \mathcal{W}$, define $w^{\prime}=i_{1} \cdots \bar{i}_{l}$ (here \bar{i} denotes the negation of i). Let $w_{1}=1$ and $w_{n+1}=w_{n} w_{n}^{\prime}$ for $n \geq 1$ and $w_{\infty} \in\{0,1\}^{\mathbb{N}}$ is the infinite sequence of 0 and 1 obtained in this way. Recall that the metric d on $\{0,1\}^{\mathbb{N}}$ is defined by $d(\omega, \eta)=\sum_{i=1}^{\infty} \frac{\left|\omega_{i}-\eta_{i}\right|}{2^{i}}$.
(a) Define the substitution maps $s: \mathcal{W} \rightarrow \mathcal{W}$ by $s(0)=11, s(1)=10$, $s\left(i_{1} \cdots i_{l}\right)=s\left(i_{1}\right) \cdots s\left(i_{l}\right)$. Show that $w_{n}=s^{n-1}(1)$ for all $n \in \mathbb{N}$.
(b) Show that the point $w_{\infty} \in\{0,1\}^{\mathbb{N}}$ is uniformly recurrent for the shift map, i.e. for any $\epsilon>0$ there exists $N \in \mathbb{N}$ such that there is an increasing sequence $n_{i} \rightarrow \infty$ such that $d\left(\sigma^{n_{i}} w_{\infty}, w_{\infty}\right)$ and $\left|n_{i+1}-n_{i}\right|<$ N for all $i \in \mathbb{N}$, where σ is the shift map on $\{0,1\}^{\mathbb{N}}$.
(c) Show that $w_{\infty} \in\{0,1\}^{\mathbb{N}}$ is not periodic for the shift map.

D-MATH	Dynamical Systems and	ETH Zürich
Prof. M. Einsiedler	Ergodic Theory	FS2024

Problem 5

Let \mathcal{W} denote the set of words in 0 and 1 . Recall that the word metric on \mathcal{W} is defined by $d\left(i_{1} \cdots i_{l}, j_{1} \cdots j_{m}\right)=2^{-k}$, where k is the smallest integer such that $i_{k} \neq j_{k}$ (if $i_{k}=j_{k}$ for all $1 \leq k \leq \min (l, m)$ then $k=\min (l, m)+1$). Note that $\{0,1\}^{\mathbb{N}}$ can be viewed as the completion of \mathcal{W}.

Define the substitution maps $\zeta: \mathcal{W} \rightarrow \mathcal{W}$ by $\zeta(0)=01, \zeta(1)=0$, and $\zeta\left(i_{1} \cdots i_{l}\right)=\zeta\left(i_{1}\right) \cdots \zeta\left(i_{l}\right)$.
(a) Show that $u=\lim _{n \rightarrow \infty} \zeta^{n}(0) \in\{0,1\}^{\mathbb{N}}$ exists, i.e. $\left\{\zeta^{n}(0)\right\}_{n=0}^{\infty}$ is a Cauchy sequence in \mathcal{W}.
(b) Prove that the Fibonacci sequence $u=01001010010 \ldots$ obtained in (a) is Sturmian, i.e. for any $n \geq 1$ the number of words of length n appearing in u is $n+1$.

