Problem sheet 5

Problem 1

Let $T: [0,1] \rightarrow [0,1]$ be the map defined by $T(x) = x^2$.

- (a) Show that for every T-invariant probability measure μ , $\mu((0,1)) = 0$. (Hint: Poincare Recurrence Theorem)
- (b) Describe all *T*-invariant probability measures.

Problem 2

Let (X, \mathcal{A}, μ) be a measure space with $\mu(X) = 1$, and $T : X \to X$ be an ergodic measure-preserving map. Let $f : X \to \mathbb{R}^+$ be a measurable function such that $\int_X f d\mu = \infty$. Prove that

$$\frac{1}{N}\sum_{k=0}^{N-1}f(T^kx)\to\infty$$

for almost all $x \in X$. (Hint: approximate f by integrable functions.)

Problem 3

Let $X = [0,1]^2$ and let \mathcal{A} be the σ -algebras comprising sets of the form $B \times [0,1]$ for B a measurable subset of [0,1]. Define $g: X \to \mathbb{R}$ by $g(x,y) = xy + y^2$.

- (a) Compute the conditional expectation $E(g|\mathcal{A})$ with respect to the twodimensional Lebesgue measure.
- (b) Let μ be the measure on X defined by

$$\int f d\mu = \frac{1}{3} \int_0^1 f(s,s) ds + \int_0^1 \int_0^{\sqrt{s}} f(s,t) dt ds.$$

Compute the conditional expectation $E(g|\mathcal{A})$ with respect to μ .

Problem 4

Define a map $R : \mathbb{T} \times \mathbb{T} \to \mathbb{T} \times \mathbb{T}$ by $R(x, y) = (x + \alpha, y + \alpha)$ for an irrational α . Let μ be the Lebesgue measure on $\mathbb{T} \times \mathbb{T}$.

D-MATH	Dynamical Systems and	ETH Zürich
Prof. M. Einsiedler	Ergodic Theory	FS2024

(a) Show that for any set of the form $C = A \times B$ with A, B Lebesgue measurable subsets of \mathbb{T} (such a set is called a measurable rectangle) we have

$$R^{-1}C = C \implies \mu(C) = 0 \text{ or } \mu(C) = 1.$$

(b) Show that the transformation R is not ergodic with respect to μ .

Problem 5

- (a) For $\alpha_1, \alpha_2 \in \mathbb{R}$ define $R_{\alpha_1}, R_{\alpha_2} : \mathbb{T} \to \mathbb{T}$ by $R_{\alpha_1}(x) = x + \alpha_1$ and $R_{\alpha_2}(x) = x + \alpha_2$. Find an arithmetic condition on α_1 and α_2 that is equivalent to the ergodicity of $R_{\alpha_1} \times R_{\alpha_2} : \mathbb{T} \times \mathbb{T} \to \mathbb{T} \times \mathbb{T}$ with respect to $m_{\mathbb{T}} \times m_{\mathbb{T}}$.
- (b) Generalize part (a) to characterize ergodicity of the rotation $R_{\alpha_1} \times \cdots \times R_{\alpha_n} : \mathbb{T}^n \to \mathbb{T}^n$ for $(\alpha_1, \cdots, \alpha_n) \in \mathbb{R}^n$.