D-MATH	Dynamical Systems and	ETH Zürich
Prof. M. Einsiedler	Ergodic Theory	FS2024

Problem sheet 6

Problem 1

For a number $x \in(0,1)$, we write $x=0 \cdot d_{1}(x) d_{2}(x) \ldots$ for the decimal expansion of x.
(a) Show that for Lebesgue almost every x, the limit of

$$
D(x)=\lim _{n \rightarrow \infty} \frac{d_{1}(x)+\cdots+d_{n}(x)}{n}
$$

exists and compute it.
(b) Give examples of $x \in(0,1)$ such that $D(x)$ does not exist and such that $D(x)=\frac{1}{2024}$.

Problem 2

Recall that the Gauss map $G:[0,1] \rightarrow[0,1]$ is defined as follows:

$$
G(x):= \begin{cases}0 & \text { if } x=0 \\ \frac{1}{x}-n & \text { if } x \in\left(\frac{1}{n+1}, \frac{1}{n}\right], n \geq 2 .\end{cases}
$$

(a) Show that $\frac{1}{\log 2} \frac{d x}{1+x}$ is a G-invariant probability measure on $[0,1]$.
(b) For a number $x \in(0,1)$, we write $x=\left[a_{1}(x), a_{2}(x), \ldots\right]$ for the continued fraction expansion of x, i.e.

$$
x=\frac{1}{a_{1}(x)+\frac{1}{a_{2}(x)+\frac{1}{\ddots}}}, \quad a_{1}(x), a_{2}(x), \ldots \in \mathbb{N} .
$$

Show that for Lebesgue a.e. x,

$$
\frac{a_{1}(x)+a_{2}(x)+\cdots+a_{n}(x)}{n} \rightarrow \infty \text { as } n \rightarrow \infty,
$$

but

$$
\lim _{n \rightarrow \infty}\left(a_{1}(x) \cdots a_{n}(x)\right)^{\frac{1}{n}}
$$

exists.

D-MATH	Dynamical Systems and	ETH Zürich
Prof. M. Einsiedler	Ergodic Theory	FS2024

Problem 3

Let (X, A, μ) be a measure space with $\mu(X)=1$, and $T: X \rightarrow X$ be a measure-preserving map. For $\theta \in \mathbb{R} \backslash 2 \pi \mathbb{Z}$, consider the linear map

$$
U_{\theta}: L^{2}(X) \rightarrow L^{2}(X): f \mapsto e^{i \theta}(f \circ T) .
$$

(a) Show that for every $f \in L^{2}(X)$,

$$
\left\|\frac{1}{N} \sum_{k=0}^{N-1} U_{\theta}^{k} f-P_{\theta} f\right\|_{2} \rightarrow 0
$$

where P_{θ} denotes the orthogonal projection to the subspace

$$
V_{\theta}=\left\{f \in L^{2}(X): f \circ T=e^{-i \theta} f \text { a.e. }\right\} .
$$

(Hint: Review the proof of the Mean Ergodic Theorem.)
(b) Suppose that T is mixing. Show that $V_{\theta}=0$ and conclude that for every $f \in L^{2}(X)$,

$$
\frac{1}{N} \sum_{k=0}^{N-1} e^{i k \theta}\left(f \circ T^{k}\right) \rightarrow 0 \text { in } L^{2}(X) .
$$

Problem 4

For $n \geq 2$ let A be an integral $n \times n$ matrix with determinant ± 1. Let

$$
T: \mathbb{R}^{n} / \mathbb{Z}^{n} \rightarrow \mathbb{R}^{n} / \mathbb{Z}^{n}: x \mapsto A x\left(\bmod \mathbb{Z}^{n}\right)
$$

be the corresponding torus automorphism. Suppose that T is hyperbolic, i.e. A has no eigenvalue of modulus 1. Using Fourier series, show that
(a) T is ergodic with respect to the Lebesgue measure.
(b) T is mixing with respect to the Lebesgue measure.

Problem 5

(Kac's Lemma) Let $T: X \rightarrow X$ be an ergodic measure preserving transformation of a probability space (X, \mathcal{B}, μ) and let $A \subset X$ be a measurable subset with $\mu(A)>0$. By Poincaré recurrence theorem, the integer

$$
n_{A}(x)=\inf \left\{n \geq 1: T^{n}(x) \in A\right\}
$$

is defined for a.e. $x \in A$. For any $A \in \mathcal{B}$ be such that $\mu(A)>0$, prove that $\int_{A} n_{A} d \mu=1$.

