Problem sheet 8

Problem 1

Let $T \colon \mathbb{R} \to \mathbb{R}$ be given by

$$T(x) = \frac{1}{2}\left(x - \frac{1}{x}\right)$$

for $x \neq 0$ and T(0) = 0.

- (a) Show that the map T is two to one.
- (b) Show that the map T is measure-preserving with respect to the measure μ defined by

$$\mu([a,b]) = \int_{a}^{b} \frac{1}{1+x^2} dx.$$

(c) Let ϕ be the map from \mathbb{R} to \mathbb{T} given by

$$\phi(x) = \frac{1}{\pi}\arctan(x) + \frac{1}{2}.$$

Show that ϕ is an isomorphism between the measure preserving systems (\mathbb{R}, μ, T) and (\mathbb{T}, Leb, T_2) where T_2 is the doubling map $x \mapsto 2x(\mod 1)$ on the torus \mathbb{T} and Leb is the Lebesgue measure.

Problem 2

Let $T_1, T_2: X \to X$ be measurable maps. Let μ_1 and μ_2 be T_1 - and T_2 -invariant probability measures on X, respectively. Define

$$T: X \times X \to X \times X, \ (x_1, x_2) \mapsto (T_1 x_1, T_2 x_2)$$

to be the product map and let μ be the product measure of μ_1 and μ_2 . Show that T is mixing for μ if and only if T_i is mixing for μ_i for i = 1, 2.

Assume now that $T_1 = T_2$ and $\mu_1 = \mu_2$. Is *T* also mixing with respect to the pushforward measure $\triangle_*\mu_1$ with respect to the diagonal embedding $\triangle: X \to X \times X, \ x \mapsto (x, x)$?

Problem 3

Let (X, \mathscr{B}, μ, T) be a measure preserving system on a probability space and write $T^{(k)}$ for the k-fold Cartesian product $T \times \cdots \times T$. Prove that $T^{(k)}$ is ergodic for all $k \geq 2$ if and only if $T^{(2)}$ is ergodic. Does the same statement hold if we replace $T^{(2)}$ by $T^{(1)}$?

Problem 4

Let (X, \mathscr{B}, μ, T) be a measure preserving system on a probability space.

(a) Show that if this system has the property that for any $A,B\in \mathscr{B}$ there exists an N such that

$$\mu(A \cap T^{-n}B) = \mu(A)\mu(B)$$

for all $n \ge N$, then the system is trivial in the sense that $\mu(A) = 0$ or 1 for every $A \in \mathscr{B}$.

(b) Show that if this system has the property that the convergence

$$\mu(A \cap T^{-n}B) \to \mu(A)\mu(B)$$

is uniformly as $n \to \infty$ for any $A, B \in \mathscr{B}$, then the system is trivial as well.

Problem 5

Show that a (X, \mathcal{B}, μ, T) be a measure preserving system is weak-mixing if and only if

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} |\langle U_T^n f, g \rangle - \langle f, 1 \rangle \cdot \langle 1, g \rangle| = 0$$

for all $f, g \in L^2_{\mu}(X)$, where U_T is the Koopman operator, i.e. $U_T f = f \circ T$ for all $f \in L^2_{\mu}(X)$.

Problem 6

Prove that a measure-preserving transformation T is weak-mixing if and only if for any measurable sets A, B and C with positive measure, there exists some $n \ge 1$ such that

$$T^{-n}A \cap B \neq \emptyset$$
 and $T^{-n}A \cap C \neq \emptyset$.