D-MATH	Analysis IV	ETH Zürich
Marco Badran	Problem set 1	FS 2024

The exercises below are listed by increasing difficulty, starting from warm-up questions that serve to get acquainted with the topics, up to exam-like questions. Questions marked with (*) can be challenging and are more difficult than the average exam question. You are encouraged to try and solve them by working in groups if necessary.

The question marked with <u>BONUS</u> is a multiple-choice question that can contribute to extra points in the final exam; refer to the webpage for more information.

1.1. Inner product spaces.

1. Let $V := M_{n \times n}(\mathbb{C})$ be the space of $n \times n$ matrices with complex entries and define the Fobenius product $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{C}$ as

$$\langle A, B \rangle := \operatorname{Tr}(AB^{\dagger}) = \sum_{i,j=1}^{n} a_{ij} \overline{b}_{ij}$$

where Tr denotes the trace and B^{\dagger} is the Hermitian transpose of B, obtained by transposition and complex conjugation of the entries: $B^{\dagger} = \overline{B^T}$. Show that $(V, \langle \cdot, \cdot \rangle)$ is an inner-product space. **Hint:** first observe that $\operatorname{Tr}(A) = \overline{\operatorname{Tr}(A^{\dagger})}$.

2. Consider *n* inner-product spaces $(V_1, \langle \cdot, \cdot \rangle_1), \ldots, (V_n, \langle \cdot, \cdot \rangle_n)$. Is $(V, \langle \cdot, \cdot \rangle)$, where $V = V_1 \times \cdots \times V_n$ and

$$\langle (v_1, \ldots, v_n), (w_1, \ldots, w_n) \rangle \coloneqq \sum_{i=1}^n \langle v_i, w_i \rangle_i$$

an inner product space?

3. Let $W \coloneqq M_{n \times n}(L^2(\mathbb{R}, \mathbb{C}))$ be the space of $n \times n$ matrices whose entries are square integrable functions from \mathbb{R} to \mathbb{C} . Which product would make W an inner product space? **Hint:** observe that W is a "composition" of two inner product spaces.

1.2. Continuity of operations. An inner product space $(V, \langle \cdot, \cdot \rangle)$ is also a metric space under the norm $|\cdot| := \sqrt{\langle \cdot, \cdot \rangle}$, hence it has a natural topology. Prove that $\langle \cdot, \cdot \rangle$ and the vector space operations $(\cdot, +)$ are continuous from $V \times V$ (resp. $V \times \mathbb{C}, V \times V$) endowed with the natural product topology, to \mathbb{C} (resp. V, V). Recall that a natural topology in $V \times V$ is the one induced by $|\cdot|$, i.e. the one induced by the norm

$$|(v_1, v_2)|_{V \times V} := |v_1| + |v_2|.$$

Similarly, the norm (thus the metric and the topology) on $V \times \mathbb{C}$ is given by

$$|(v,\alpha)|_{V\times\mathbb{C}} := |v| + |\alpha|.$$

Hint: is there a clever way to write $\langle \cdot, \cdot \rangle$, in order to prove continuity?

1.3. Topology of normed spaces. Determine whether the following sets X are well-defined, open, close, subspaces and convex.

- 1. In the normed space $(C([0,1]), \|\cdot\|_{L^{\infty}})$, the subset X of nowhere vanishing functions.
- 2. In the normed space $(C([0,1]), \|\cdot\|_{L^2})$, the subset X of nowhere vanishing functions.
- 3. (<u>BONUS</u>) In the normed space $(L^2(0,1), \|\cdot\|_{L^2})$, the subset $X = \{f : \int_0^1 f = 1\}$.
 - \Box Not well defined.
 - \Box Well defined, open and convex.
 - \Box Well defined, closed, convex but not a linear subspace.
 - \Box Well defined, closed and linear subspace.
- 4. In the normed space $(L^2(\mathbb{R}), \|\cdot\|_{L^2})$, the subset $\{f : f(x) = f(-x) \text{ for a.e. } x \in \mathbb{R}\}$. **Hint:** It's useful to recall that if $u_k \to u$ in L^2 then, up to picking a subsequence, there is a null measure set N such that $u_k(x) \to u(x)$ for all $x \notin N$.
- 5. (*) In the normed space $(L^2(0,1), \|\cdot\|_{L^2})$, the subset $X = \{f : f \ge 0 \text{ and } \int_0^1 \frac{2f}{1+f} \ge 1\}$. **Hint:** observe that the map $s \mapsto 2s/(1+s)$ is concave for $s \ge 0$.

1.4. Quantitative Cauchy Schwarz. Let H be a real inner product space, prove the identity

$$|x||y| - x \cdot y = \frac{|x||y|}{2} \Big| \frac{x}{|x|} - \frac{y}{|y|} \Big|^2 \ge 0 \text{ for all } x, y, \in H.$$

Characterize the set $C \subset H \times H$ of pair of vectors that saturate the Cauchy-Schwarz inequality, i.e. $x \cdot y = |x||y|$. Plot C in the case $H = \mathbb{R}$.

(*) If x, y are ϵ -close to saturate the Cauchy Schwarz inequality, that is

$$(1-\epsilon)|x||y| \le x \cdot y,$$

then how close are x, y to the set C? Bound from above the number

$$\inf_{(x',y')\in C} |x-x'|^2 + |y-y'|^2 =: \operatorname{dist}^2((x,y),C).$$