D-MATH Analysis IV ETH Ziirich
Marco Badran Problem set 10 FS 2024

The exercises below are listed by increasing difficulty, starting from warm-up questions
that serve to get acquainted with the topics, up to exam-like questions. Questions marked
with (%) can be challenging and are more difficult than the average exam question. You
are encouraged to try and solve them by working in groups if necessary.

The question marked with BONUS is a multiple-choice question that can contribute to
extra points in the final exam; refer to the webpage for more information.

10.1. Some Fourier transforms. Compute the following one dimensional Fourier

transforms for

iz—|z|? —alz|
€ ) )

where a € C,Re(a) > 0.

e e " sin(32)1(0,00);

(BONUS) Given u,v € S(R) compute the Fourier transforms of

(z,y) = u(2z)v(y/2)

in terms of i, 0.

10.2. Dominated convergence review. Motivate each of the following statements
using the dominated convergence theorem in a suitable measure space, but pay attention:
one of them is in fact false!

1. Given f € L?(R?) it holds

/ f(z)?sin(x;) dr — 0 as R — oo
{lz|>R}

2. Given f € LY(R?) it holds

/ J1+ f@)2—1
{lz|>R}

1+ f(x)

dr — 0as R — oo

3. Let ¢ € C}(R?) such that ¢(x) = 1 in a neighbourhood of z = 0. Then for each
f € LY(R?) it holds

lim f( YW(ex)de = [ f(z)dx and lim f( )0z, (ex) dx = 0.

e—0 Rd e—0

4. Let {c;} € £'(N). The map f(t) := Cypencke’™ ¥ is of class C*(R) and its
derivatives are given by f(™(t) = Yoy (isin(k))™ et smRE

5. Let {c;} € 2(N). The map f(t) :== Sjen e is of class C'(R) and its derivative
is given by f/(t) = 2it Ypey kepe™
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10.3. Harmonic functions on the disk. In this problem we show the existence of the
so-called harmonic extension in the interior of the disk of a sufficiently regular function f
defined on the disk boundary.

Consider the second order differential operators in two variables (z1, xs):

1 1
A = 611 + 822 and L= 811 + *81 + 7822.
{E1 l‘l

We say that a twice differentiable function w(z, x2) is harmonic Aw = 0 in its domain.
1. Given u: D — R, where D := {(z,y) : 2* + y* < 1}, consider the function
v(r,0) :=u(rcosf,rsinf), rel0,1],0 e R! (1)

Using the chain rule, check that (Au)(rcos@,rsinf) = Lu(r,8) for all r € (0,1) and
0 € R.

2. Given any regular function F': 9D — R consider its 27 periodic version f: R — R
defined by
F(cosf,sin®) =: f(0), 0€R.

Show that we can find a solution of

Au=0 in D\ {0},
u=F on 0D,

solving instead
Opov + 10, + 120, v =0 in (0,1] x R,
v(r,0+2m) = v(r,0) in (0,1] x R, (2)
v(1,6) = f(0) for all 0 € R,

and then defining u trough (1).

3. Formally solve the system (2) by the Ansatz v := ez ux(r)e?*®. Explain why the
{ug(r)} are not uniquely determined by the {cx(f)}. Explain why they are unique

if we further require that

limsup |ug(r)| < 0o Vk € Z. (3)
rl0

4. Let v(r,0) be the Ansatz constructed in the previous point using the extra assumption
(3). Show that v is of class C* in the (r,6) variables in [0, 1) x R, as soon as f € L*.

5. (%) show that, as soon as f € L?*(—m,7), the v you constructed with the extra
assumption (3), corresponds in fact to a u that is C*°(D) in the whole open disk
(including the origin!). Furthermore this u meets the boundary condition in the
sense that

ligl HU(T’, ) — fHLz(_ﬂﬂr) = 0

IThis is u in polar coordinates.
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10. Solutions

Solution of 10.1:
1. Set f(z) = e 1#I°. Define the operators
T(f) = f(—a), mea(f)=e"f, Ga(f) = flar),
where @ > 0. Then, we have
Fod, = \a|’d61/a oF, F 0Mgia =Ty 0 F.

Furthermore, if ®;(z) := (27)Y/2¢=*/2 then ®&; = ®;. Hence our f can be written
as
f=V2r(mei 00 5)(P1),
so taking the Fourier transform of both sides
= V21 (F omei 00 s5)(P1)
= V27 (11 0 F 04 45) (1)
= V7(1100,50F) (1)

= V(0 8,3) (1) = VA () = e

2. Set f(x) = e~?*l. The function is summable because | f(z)| = e ®(®%and Re(a) > 0.

Then,
o] 0 o)
=/ ;ﬂ/ f(z)e ™" de =/ 217r/ e e T dy 4 217r/0 e~ e’ .

Hence by direct integration, f (&) = ’/i(a—lif + aiis) = \/g -7 which is continuous
and vanishes at infinity.

3. Set f(z) = e **sin(3z)1(g,0c). Then, using 2isin(3z) = ** — e~ we find

A / " f@)e € de = 1\ /Z / ¥ et E-3)e _ a3} gy
—00 0

Hence, J?(g) = %\/;( a+(§173)i + a7(€173)i)'
4. Given u,v € S(R), set g(u,v) = u(2x)v(y/2). Then,

g(&,n) = zi / u(2x)v(y/2)e” e dx dy

z@@/’w>*Wm/ oly)e 2 dy

where the second equality is because we could interchange integration order for
functions in the Schwartz class and Fubini theorem applies. Hence,

9(&,m) = a(£/2)0(2n).
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Solution of 10.2:

1. Consider the family of functions fr : RY — R given by fr(z) = 1p¢ () f(x)*sin(z;).
We have pointwise fr — 0 as R — oco. Moreover, for every x € RY, |fr(z)] <
| f(x)]? - |sin(x1)| < |f(z)]*. Note that f € L*(R?) implies that [y, |f(z)[*dz < oo,
that is, | f|* is summable. Thus the family fg is pointwise convergent and pointwise
bounded by a summable function, so we can apply the dominated convergence
theorem in L*(R?) to conclude
/ f(z)?sin(z,) dr = fr(z)dx — Odx =0as R — oo.
{|z|>R} R4 R4
1+ f(z)2-1
1+f(x)
Since f is summable, we know that its Fourier transform f approaches zero as
|z| = oo. Thus there exists some M > 0, such that for all = with || > M, it holds

that |1 + f(:v)| > £. By definition of fz we have fr — 0 pointwise and for every
R > M and z € R?, we have

1 21
fa@) < VIO o)

1/2

2. Consider the family of functions fz : R? — R, given by fr(z) = 1p:

since /1 + f(z)? —1 </f(x)2. So fr is pointwise convergent and dominated (for
R big enough) by a summable function. Hence dominated convergence for L!'(R?)

gives
/ V14 f(x)?— 1
{lz[>R}

1+f( )

3. Consider the family of functions f. : R — R, given by f.(x) = f(z)y(ex). We know
that ¢ = 1 in B,(0) for some r > 0. Then for any x € B, ,.(0), ez is in B,(0) and
so f-(z) = f(z)¢¥(ex) = f(x). This shows that f. — f pointwise as ¢ — 0. Since
Y € CHR?), it is bounded, |f.(x)| < ||1||r=|f ()] and so |[1)||p|f| is summable
and bounds f. pointwise. We can apply the dominated convergence theorem in
LY (RY) and get

fr(z)dz — 0 as R — oc.

fle)(ex)de = | fo(x)de — | f(x)drase—0.

R4

For the second limit, notice ¢ € C(RY) implies that also its derivatives are compactly
supported, i.e. 0,9 € CY (R?) and so they are bounded as well. Moreover, since v
is constant in a neighbourhood of 0, there is some 7 > 0 such that d,,% = 0 in B,(0).
Thus by the same argument as above, the family g.(v) = f(x)d,, w(ex) converges
pointwise to 0 as ¢ — 0. By boundedness, |g-(z)| < Haxjw\po]f( x)|, where the
upper bound is again summable. So again by dominated convergence in L'(R%):

f(2)0,,¢(ex) dv = / ge(z)dx — 0 as € — 0.
Rd Rd
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4. Notice that for any ¢t € R, |f(t)] < 3 |exe’"®?| = 3, |ex] < oo and thus f is a
well-defined function. We first show that f is continuous: For any k € N, we have
cret Sk s e etk a5 s — ¢, Moreover, |cpet*™®)5| < |¢i|, which is summable.
By the dominated convergence theorem for L'(N, P(N), #) we have:

s) = Z et ks _y Z cpet SRt — f(t) as s — t,

keN keN

which shows continuity of f. Next, we want to compute the derivative f'(t).
For this, consider w = it (eism(’“)h - 1) ekt For every k € N,
%(e”i“(k)h - 1) cepet Rt s isin(k) - cpe’™™® as b — 0 and for all h € R,

|+ (eisjn(k)h - 1) et < 9sin(k)| - |epe’ B < 2|eg|, which is summable.

So we can invoke again dominated convergence for L'(N, P(N), #) to conclude that

- Z lim Ck}ll (ei sin(k)h __ ) isin(k)t Z i Sll’l zsm(k)

ken P70 keN

Similar to the argument above, we can show continuity of f’, and thus f € C'(R).
We obtain f € C=(R) and the identity ™ (t) = 3, (i sin(k))™cpe ¥ by iterating
the exact same steps above and ¢ by (isin(k))™ c.

5. This statement is actually false: Consider the sequence {4} € ¢*(Z) and the map
ft) = Xpen %eith. This sum diverges for ¢ = 0 and so f is not even continuous at

the point ¢ = 0.
Solution of 10.3:

1. It is convenient to define ®(r,6) = (r - cos@,r - sinf). Then v = u o ®. Further, we
notice that

%:COSH %:—rsinﬁ
%zSin@ %ZTCOSQ.
Using this and the chain rule, we obtain
0P, 6’<I>2
orv =0 Oou
VS e TR
=cosf - (Oyu) o ® +sinf - (pu) o
0P, 0P,
897)—81u W"—agu 86

=rcosf - (Oqu)o P —rsind - (Oyu) o d
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Another application of the chain rule gives us:

Opr =0,.(0,0)
0P 0P
=cosf <0uu . (977“1 R 8:)
o o
+sinf - ( Ogu - 0% + Opu - 0%,
or or

=cos” 0 - (O11u) o ® + 2cos fsin §(Dypu) o @ + sin? § - (Dpou) © P.
We can compute dggv by the same method:

8991) :89(891;)
=0p (r cos@ - (Oqu) o ® — rsind - (O1u) o D)

. 0P oD
=rsinf - (Osu) o ® + rcos b (821u . (9791 + Ot - 8;)
. 0P 0P
R A (8“ g+ deu- ae)

=—1r(cosf-uo®+sinf-dhuod)
+ 72 (sin2 00111 0 ® — 2 cos B sin 00,51 0 P + cos? 0Dxu o <I>)
= — 10w + 12 (sin2 001110 ® — 2cos O sin 00151 o ® + cos? 00yu o <I>>
Note that this implies (by using cos? @ + sin? @ = 1) that
:2399@ + Oppv = —iarv + 0111 0 @ + Ogou 0 D.
Now the claim boils down to a direct computation:
(Au)(r - cos,r-sinf) = (Oy1u) o & + (Oxu) o ®

1 1
= —0ppV + Opyv + —Opv = Lv(r, 0).
r r

2. Assume that v : (0,1] x R — R is a solution to
Opgv + 1OV + 1200 =0 (r,0) € (0,1] x R
v(r,0 +2m) = v(r,0) (r,0) € (0,1] xR
v(1,0) = f(0) § € R.

Then there must exist u: D\ {0} — R such that v(r,0) = u(r cos,7sin6). By the
first part of the exercise, we have that

Au= Lv = 0,0+ 1100 + 1 20h9v
=172 (Opgv + 10,0 + r?0,v) = 0,

on D\ {0} which corresponds to considering (r,6) € (0,1) x R. The initial condition
can also be checked directly: Let = € 0D, then there is § € R such that x =
(cosf,sin ). This implies

u(z) =v(1,0) = f(0) = F(cosf,sinf) = F(x).
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3. We now want to solve the PDE from part (2) formally. For this we assume

vi=Y ug(r)e*.

keZ

We have

Opov = — gz K up(r)et*®
0 = Yger, UZ( )e ik

Orr¥ = Yopeg ug(r )elke
Thus, the PDE Opv + r9,v + 1720,,v = 0 becomes the following system of ODEs:
Eui(r) = ruj(r) +rul(r), for all k € Z.

We first consider the case k = 0, where we have r - uy(r) + r* - uj(r) = 0. This ODE
is solved by ug(r) = ¢y + do - log r, for some arbitrary constants cg, dy. For k # 0 we
have ug(r) = cpr*l + dpr=I¥ for arbitrary constants {c,} and {d}}.

We can see that the initial datum v(1,60) = f(f) is not enough to determine the
coefficients, as it only tells us that ux(1) has to agree with {cx(f)}, and since the uy
are determined by a second order ODE, this is not sufficient for uniqueness: there is
an additional degree of freedom. If we additionally assume,

lim sup |ug(r)| < o0
rl0

for all k € Z, this forces the coefficients of the log and of the negative powers of

r to be zero. Thus, we obtain dp = 0 for all £ € Z. And matching the condition
ug(l) = cx(f) we find Thus, ¢, = ¢ (f) for all k£ € Z. We obtain

v(r,0) =" cr(f)rikletkd.

kEZ

4. We now want to show that the solution constructed in the last part is smooth if
f € L?. We know that r* decays faster than any power of k if |r| < 1. Consider now
the Q. :==[0,1 —¢) x R. We show that v|q, is smooth for any ¢ > 0. For this let
a, 8 € N be arbitrary. Then on 2. we obtain

S 10205 u(r)e |z = 3 [0 (@D )| o
keZ keZ )

< Sl fogrH] .

S Z’Ck DIEPH (k] = 1) ..(|k;| a1 - ) < oo,
hez

where we use that {c;(f)} € ¢ C ¢ in the end. Thus, the partial sums and all
their derivatives converge uniformly on )., which implies v|o. € C*(£2.). Since
e > 0 was arbitrary, we have that v is smooth on [0,1) x R.
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5. We first show that v fulfils the boundary condition in the sense that
11}%1 ||U(T’, ) - f||L2(—7r,7r) = 0.
Note that for any k € Z we have

cr(u(r,) — f) = Ck(f)rk —ci(f).

We see directly, that i (u(r,-)—f) — Oasr 1 1 pointwise. Thus, lim, 41 [|u(r,-) = fllj2_rn) =
0 by Parseval’s identity and dominated convergence with dominant

e ()L = ") < Jen(f)I* € E1(2).

We remark that if we have stronger decay conditions on ¢ (f) (i.e., f is more
regular) then the boundary datum is achieved in stronger norms. For example, if
>k lee(f)] < oo, then the same computation shows

lisa [u(r, ) = fll(-nm) = .

which means that u can be continuously extended to f on dD.

We now want to see that v corresponds to a solution u € C'°(D) of the Laplace
equation. The relationship between u and v is given by v(r,0) = u(r cosf, rsin 0),
note that if we show u € C?(D) we automatically obtain that u is a solution of
Au = 0 in the whole D, by continuity.

Recall ®(r,0) = (r - cosf,r - sinf) from part (1). For (r,0) # 0 this is a local
diffeomorphism. Thus we obtain that u can be written around any (x,y) € D\ {0}
as the composition of smooth functions. Namely of v and a local inverse of ®. Thus,
u is smooth on D \ {0}. We still have to show it at the origin, since the change of
variables is singular there we have to work in cartesian coodinates.

In order to do so we express

(O1u) o & = cosf Ov — isinﬁ(?gv =" e (£)r*1 (k| cos @ — ik sin 0)e™?

keZ
= c1(f)(cos @ —isinB)e” 4+ c_1(f)(cos O +isin0)e ™ + ri(r, 0)
= a1(f) + caa(f) +ro(r, 0),

this function is continuous as » — 0, since the dependence on 6 is only in the v
which is in turn multiplied by r. Let us check first that the same happens for dyu:

1 A
(Bou) o ® =sinf v + ~ cosf v = Y cx(f)r*=L(|k| sin @ + ik cos 0)e’?
r

=
= c1(f)(sinf +icos)e + c_i(f)(sinh —icosO)e ™ + ri(r,0)
=ic1(f) —icq(f) +ro(r,6),

which is again continuous. This little miracle suggests that something is going on.
One could prove inductively that this computation works similarly for derivatives of
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all orders (this is not a surprise, the dyu solves the same problem with boundary
datum 0, f, and we did not use the size of the cx(f) in this computation...), but we
present another argument.

Recall that the change of variables ® can be easily inverted for certain functions,
namely
(@ + iy)H = rMe™0 - (g — iy) M = e iIKE

so using this identity and splitting the sum in positive and negative frequencies we
can express directly v in cartesian coordinates:

u(z,y) =vo @ =ca(f) + 3 al(f)(z +iy)* + 3 i)z —iy)",

k>0 k>0

it can be checked by summing the derivatives that this function is C* as long as
22 4+ y? < 1, but we can also remember complex function theory and set z 1= x + iy
and notice that

u(,y) = co(f) + D a2+ ey 7”.

k>0 k>0
=6(2) —i(2)

By standard complex analysis ¢(z) is holomorphic in the unit disk and ¢ is anti-
holomorphic in the unit disk. In particular they both are C*°.
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