D-MATH	Analysis IV	ETH Zürich
Marco Badran	Problem set 11	FS 2024

The exercises below are listed by increasing difficulty, starting from warm-up questions that serve to get acquainted with the topics, up to exam-like questions. Questions marked with (*) can be challenging and are more difficult than the average exam question. You are encouraged to try and solve them by working in groups if necessary.

The question marked with <u>BONUS</u> is a multiple-choice question that can contribute to extra points in the final exam; refer to the webpage for more information.

11.1. Closed answer questions.

- 1. If $f \in L^1(\mathbb{R}^d)$ and $\hat{f} \in L^2(\mathbb{R}^d)$ is it necessarily true that $f \in L^2(\mathbb{R}^d)$?
- 2. Is the function $\frac{1}{1+ix^4}$ in the Schwartz class $\mathcal{S}(\mathbb{R})$?
- 3. Show that if $\lambda \in \mathbb{C}$ is an eigenvalue¹ of $\mathcal{F} \colon L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$, then necessarily $\lambda \in \{\pm 1, \pm i\}.$
- 4. Let A be an invertible $d \times d$ matrix with real entries. Compute the Fourier transform of $x \mapsto f(Ax)$ in terms of \hat{f} and A.
- 5. Given $\psi \in \mathcal{S}(\mathbb{R})$, show that

$$\frac{1}{1+i\xi}\psi(\xi)\in\mathcal{S}(\mathbb{R}).$$

Hint: recall Leibniz formula for higher-order derivatives of products

$$(fg)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(n-k)} g^{(k)}.$$

11.2. Differential operators with constant coefficients. (<u>BONUS</u>) Let $u \in \mathcal{S}(\mathbb{R}^d)$ be a scalar function and $V \in \mathcal{S}(\mathbb{R}^d, \mathbb{R}^d)$ be vector field. Compute the following quantities in terms of \hat{u} and \hat{V}^2 .

- 1. $\mathcal{F}(\nabla u)$,
- 2. $\mathcal{F}(\operatorname{div} V),$
- 3. $\mathcal{F}(\Delta u)$.

11.3. A differential equation. Given $\phi \in \mathcal{S}(\mathbb{R})$ we consider the differential equation

$$u'(x) + u(x) = \phi(x)$$
 for all $x \in \mathbb{R}$.

1. Show that there is a unique solution within the class of Schwartz functions.

¹That is to say: there exists some nonzero function $v \in L^2(\mathbb{R}^d)$ such that $\mathcal{F}v = \lambda v$.

²The Fourier of a vector field is taken component-wise, i.e., $\hat{V}(\xi) = (\hat{V}_1(\xi), \dots, \hat{V}_d(\xi))$.

2. Taking the Fourier transform of both sides of the equation, and then the anti-Fourier transform show that

$$u(x) := \int_{\mathbb{R}} a(\xi) \hat{\phi}(\xi) e^{i\xi x} d\xi,$$

is indeed a solution of the above problem, for an appropriate function $a(\xi)$ to be determined.

- 3. Solve again the above ODE, this time with classical methods (multiply by e^t etc..).
- 4. Check that the two results you found are indeed the same.

11.4. Decay of the Fourier transform and derivatives. Let $f \in L^2(\mathbb{R}^d)$ such that it's Fourier transform decays at infinity as a negative power, i.e., for some $\alpha \ge 0$ and large $M \ge 1$ it holds

$$|\hat{f}(\xi)| \le M |\xi|^{-\alpha}$$
 for all $|\xi| \ge 1$.

The goal of this problem is to show that in fact (up to a modification on a zero measure set) $f \in C^k(\mathbb{R}^d)$ for all integers $k < \alpha/2d$.

1. Consider for each R > 1 the functions

$$f_R(x) := (2\pi)^{-d/2} \int_{B_R} \hat{f}(\xi) e^{i\xi x} d\xi,$$

compute \hat{f}_R and show that $f_R \to f$ in $L^2(\mathbb{R}^d)$.

- 2. Show that each $f_R \in C^{\infty}(\mathbb{R}^d)$ but in general $f_R \notin \mathcal{S}(\mathbb{R}^d)$.
- 3. Using the decay assumption on \hat{f} , show that $\{f_R\}$ is a Cauchy sequence in $L^{\infty}(\mathbb{R}^d)$, provided $\alpha > d$. Conclude that, up to re-definition on a zero measure set, in this case $f \in C(\mathbb{R})$.
- 4. Applying the same argument to $\partial_{x_j} f_R$, show inductively that $f \in C^k$ whenever $\alpha > d + k$.