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The exercises below are listed by increasing difficulty, starting from warm-up questions
that serve to get acquainted with the topics, up to exam-like questions. Questions marked
with (∗) can be challenging and are more difficult than the average exam question. You
are encouraged to try and solve them by working in groups if necessary.

The question marked with BONUS is a multiple-choice question that can contribute to
extra points in the final exam; refer to the webpage for more information.

11.1. Closed answer questions.

1. If f ∈ L1(Rd) and f̂ ∈ L2(Rd) is it necessarily true that f ∈ L2(Rd)?

2. Is the function 1
1+ix4 in the Schwartz class S(R)?

3. Show that if λ ∈ C is an eigenvalue1 of F : L2(Rd) → L2(Rd), then necessarily
λ ∈ {±1,±i}.

4. Let A be an invertible d×d matrix with real entries. Compute the Fourier transform
of x 7→ f(Ax) in terms of f̂ and A.

5. Given ψ ∈ S(R), show that

1
1 + iξ

ψ(ξ) ∈ S(R).

Hint: recall Leibniz formula for higher-order derivatives of products

(fg)(n) =
n∑

k=0

(
n

k

)
f (n−k)g(k).

11.2. Differential operators with constant coefficients. (BONUS) Let u ∈ S(Rd)
be a scalar function and V ∈ S(Rd,Rd) be vector field. Compute the following quantities
in terms of û and V̂ 2.

1. F(∇u),

2. F(div V ),

3. F(∆u).

11.3. A differential equation. Given ϕ ∈ S(R) we consider the differential equation

u′(x) + u(x) = ϕ(x) for all x ∈ R.

1. Show that there is a unique solution within the class of Schwartz functions.

1That is to say: there exists some nonzero function v ∈ L2(Rd) such that Fv = λv.
2The Fourier of a vector field is taken component-wise, i.e., V̂ (ξ) = (V̂1(ξ), . . . , V̂d(ξ)).
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2. Taking the Fourier transform of both sides of the equation, and then the anti-Fourier
transform show that

u(x) :=
ˆ
R
a(ξ)ϕ̂(ξ)eiξx dξ,

is indeed a solution of the above problem, for an appropriate function a(ξ) to be
determined.

3. Solve again the above ODE, this time with classical methods (multiply by et etc..).

4. Check that the two results you found are indeed the same.

11.4. Decay of the Fourier transform and derivatives. Let f ∈ L2(Rd) such that
it’s Fourier transform decays at infinity as a negative power, i.e., for some α ≥ 0 and large
M ≥ 1 it holds

|f̂(ξ)| ≤ M |ξ|−α for all |ξ| ≥ 1.

The goal of this problem is to show that in fact (up to a modification on a zero measure
set) f ∈ Ck(Rd) for all integers k < α/2d.

1. Consider for each R > 1 the functions

fR(x) := (2π)−d/2
ˆ

BR

f̂(ξ)eiξx dξ,

compute f̂R and show that fR → f in L2(Rd).

2. Show that each fR ∈ C∞(Rd) but in general fR /∈ S(Rd).

3. Using the decay assumption on f̂ , show that {fR} is a Cauchy sequence in L∞(Rd),
provided α > d. Conclude that, up to re-definition on a zero measure set, in this
case f ∈ C(R).

4. Applying the same argument to ∂xj
fR, show inductively that f ∈ Ck whenever

α > d+ k.
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11. Solutions

Solution of 11.1:

1. Yes this is true. As the (inverse) Fourier transform is an isometry in L2 (Plancherel’s
formula) and so since

∥f∥L2(Rd) = ∥F−1f̂∥L2(Rd) = ∥f̂∥L2(Rd) < ∞.

2. Let f(x) = 1/(1 + ix4). For f to belong to the Schwartz space S(R), one must have
x 7→ xnDmf ∈ L∞(R), for all n,m ∈ N. However, if we choose m = 0 and n > 4, it
is clear that

|xn|
|1 + ix4|

= |x|n

(1 + x8)1/2 /∈ L∞(R),

hence f does not belong to S(R).

3. Assume λ ∈ C is an eigenvalue of the Fourier transform and let f ∈ L2(Rd) be
its associated eigenvector, i.e. F(f) = λf . We know that the Fourier transform
is an isometry on L2, with inverse the inverse Fourier transform. We note that
F(f)(x) = F−1(f)(−x), for all f ∈ L2, x ∈ Rd. Thus, one has F2(f)(x) = f(−x),
for all x ∈ Rd and hence F4(f) = f, for all f ∈ L2. Thus, our eigenvalue λ must
satisfy λ4 = 1, which implies λ ∈ {±1,±i}.

4. Let f ∈ L1(Rd), define f̃(x) := f(Ax), where A is an invertible d× d matrix with
real entries. Since A is invertible we have f̃ ∈ L1(Rd). We compute F(f̃).

F(f̃)(ξ) = 1
(2π)d/2

ˆ
Rd

f(Ax) e−ix·ξ dx

(y=Ax)= 1
(2π)d/2

ˆ
Rd

f(y)e−i(A−1y)·ξ
∣∣∣det(A−1)

∣∣∣ dy
= 1

| det(A)|(2π)d/2

ˆ
Rd

f(y)e−iy·
(

(A−1)T ξ

)
dy

= 1
| det(A)|F(f)

(
(A−1)T ξ

)
.

5. Take any differential and polynomial order α, β ≥ 0 and estimate the supremum
norm in R ∥∥∥∥xβ∂α 1

1 + xi
ψ(x)

∥∥∥∥
∞

=
∥∥∥∥∥xβ

α∑
k=0

(
α
k

)
∂k 1

1 + xi
∂α−kψ(x)

∥∥∥∥∥
∞

≤
α∑

k=0

(
α
k

)∥∥∥∥∥xβ (−i)kk!
(1 + xi)k+1 ∂

α−kψ(x)
∥∥∥∥∥

∞

=
α∑

k=0

(
α
k

)
k!
∥∥∥xβ∂α−kψ(x)

∥∥∥
∞︸ ︷︷ ︸

<∞!

< +∞.
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Solution of 11.2: By direct computation

1. F(∇u) = iξû(ξ),

2. F(div V ) = iξ · V̂ (ξ),

3. F(∆u) = −|ξ|2û(ξ).

Solution of 11.3:

1. Suppose that u, v ∈ S(R) are solutions to the differential equation. We then define
the difference w := u−v ∈ S(R) and note it solves the following differential equation

w′ + w = (u− v)′ + (u− v) = u′ + u− (v′ − v) = ϕ− ϕ = 0.

This is a first order linear differential equation with the solution w(t) = ce−t for any
c ∈ C. Since w ∈ S(R) we must have that w is bounded, which can only be the case
if c = 0. From this we infer the uniqueness since w ≡ 0 means u = v.

2. Since both sides of the equation are L1 functions, we may take the Fourier transform.
We compute

Fϕ(ξ) = F(u+ u′)(ξ) = Fu(ξ) + iξFu(ξ) = (1 + iξ)Fu(ξ).

Dividing by 1 + iξ (which is never zero!) yields

Fu(ξ) = 1
1 + iξ

Fϕ(ξ).

Since ϕ ∈ S(R) we know that (Theorem 3.25) Fϕ ∈ S(R). By Exercise 11.1.5
Fu ∈ S(R), which by Theorem 3.25 will mean that u is itself a Schwartz function.
As a consequence we are able to apply the inverse Fourier transform to get

u(x) = F−1Fu(x) = F−1 1
1 + iξ

Fϕ(x) =
ˆ
R

1
1 + iξ

Fϕ(ξ)eiξx dξ.

So the claim holds if we define the integral coefficient

a(ξ) := 1
1 + ξi

.

3. Multiply the differential equation by ex to get

exϕ(x) = u(x)ex + u′(x)ex = (u(x)ex)′.

Since exϕ(x) → 0 as x → −∞ (ϕ is bounded), we can take the integral on the
interval (−∞, x) to get

u(x)ex =
ˆ x

−∞
etϕ(t) dt.

Finally divide by ex, which yields the solution

u(x) =
ˆ x

−∞
et−xϕ(t) dt.
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4. We have found two smooth solutions:

u1(x) = F−1 1
1 + iξ

Fϕ and u2(x) =
ˆ x

−∞
et−xϕ(t) dt,

we wish to show that u1 ≡ u2. Notice that if we introduce the L1(R) function

h(x) := e−x1(0,∞)(x),

then u2 can be written as a convolution, namely

u2(x) =
ˆ
R
et−x1(0,∞)(x− t)ϕ(t) dt = (h ∗ ϕ)(x),

thus by the properties of the Fourier transform we find (notice that both h and ϕ
are in L1(Rd))

û2(ξ) =
√

2πĥ(ξ)ϕ̂(ξ) = 1
1 + iξ

ϕ̂(ξ) = û1(ξ), for all ξ ∈ R,

since the Fourier transform is injective we conclude u1 ≡ u2. We used that ĥ(ξ) =
1√
2π

1
1+iξ

.

Solution of 11.4:

1. This is a reality check. Using the fact that the Fourier Transform is an isometry of
L2 and f̂ χBR(0) ∈ L2(Rd) we get

f̂R = F(F−1(f̂ χBR(0))) = f̂ χBR(0).

This allows to compute

∥f − fR∥2
L2 =

wwwf̂ − f̂R

www2

L2
=
ˆ
Rd

∣∣∣f̂(ξ)
∣∣∣2 |1 − χBR(0)(ξ)|2 dξ −→ 0,

as R → ∞. Here we used dominated convergence with∣∣∣f̂(ξ)
∣∣∣2 |1 − χBR(0)(ξ)|2 ≤

∣∣∣f̂(ξ)
∣∣∣2 ∈ L1(Rd).

2. Note that by the computation above supp(f̂R) ⊂ BR(0) so f̂R ∈ L1 ∩ L2. Let
ψ ∈ C∞

c (Rd) with
ψ ≡ 1 on BR(0).

Then
fR = F−1

(
f̂R

)
= F−1

(
f̂R ψ

)
= (2π)d/2fR ∗ F−1(ψ).

Since ψ ∈ S(Rd) also F−1(ψ) ∈ S(Rd) and by standard properties of convolutions
we get fR ∈ C∞(Rd). For the second part assume that fR ∈ S(Rd), then also
f̂R ∈ S(Rd). But f̂R might not even be continuous. Take for example f(x) =
(2π)−d/2 exp(−|x|2/2) with f̂ = f and

f̂R = f̂ χBR(0) /∈ C0(Rd).
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3. Assume that α > d. Observe that by f̂R ∈ L1(Rd), since it has compact support
and f̂ ∈ L2. Let 1 < R1 ≤ R2 < ∞ and get

∥fR2 − fR1∥L∞ ≤ (2π)−d/2∥f̂R2 − f̂R1∥L1

≤ (2π)−d/2
ˆ

BR2 (0)\BR1 (0)
|f̂(ξ)| dξ

≤ (2π)−d/2M

ˆ
{|ξ|≥R1}

|ξ|−α dξ −→ 0,

as R1 → ∞. Here we used dominated convergence with

|ξ|−α χBR1 (0)c(ξ) ≤ |ξ|−α χB1(0)c(ξ) ∈ L1(Rd), since α > d.

This shows that (fR)R>1 ⊂ C0(Rd) is a Cauchy sequence and since C0(Rd) is a
Banach space we get fR → g ∈ C0(Rd) and pointwise. On the other hand we also
know fR → f in L2(Rd) and (up to a subsequence) pointwise a.e., so we must in
fact have g = f up to a redefinition on a null set.

4. Assume that α > d+ k. Recall the multiindex notation and let β ∈ Nn
0 with |β| ≤ k.

Using the version of Proposition 3.15 for the inverse Fourier transform we obtain

∂βfR = F−1(i ξβ f̂R),

where we used the facts that f̂R(ξ) ∈ L1(Rd) and ξβ f̂R(ξ) ∈ L1(Rd). Let 1 < R1 ≤
R2 < ∞ and get

∥∂βfR2 − ∂βfR1∥L∞ ≤ (2π)−d/2
wwwi ξβ

(
f̂R2(ξ) − f̂R1(ξ)

)www
L1

≤ (2π)−d/2
ˆ

BR2 (0)\BR1 (0)
|f̂(ξ)| |ξ||β| dξ

≤ (2π)−d/2M

ˆ
{|ξ|≥R1}

|ξ|−(α−k) dξ −→ 0,

as R1 → ∞. Here we used dominated convergence with

|ξ|−(α−k) χBR1 (0)c(ξ) ≤ |ξ|−(α−k) χB1(0)c(ξ) ∈ L1(Rd).

This shows that (fR)R>1 ⊂ Ck
b (Rd) is a Cauchy sequence and since Ck

b (Rd) is a
Banach space we get for each multi-index |β| ≤ k that

∂βfR → gβ ∈ Cb(Rd),

by Analysis II we know that we must have

∂βg0 = gβ for all multi-indeces|β| ≤ k.

Furthermore by uniqueness of the L2 limit, arguing as above, we also have g0 = f a.e..
Thus we proved that, up to modifying f in a zero measure set we have f ∈ Ck

b (Rd).
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