D-MATH	Analysis IV	ETH Zürich
Marco Badran	Problem set 12	FS 2024

The exercises below are listed by increasing difficulty, starting from warm-up questions that serve to get acquainted with the topics, up to exam-like questions. Questions marked with (*) can be challenging and are more difficult than the average exam question. You are encouraged to try and solve them by working in groups if necessary.

12.1. Closed answer questions.

- 1. Let (X, d) be a metric space and let $q \in X$. Assume you have a sequence $\{x_k\} \subset X$ such that any subsequence $\{x_{k_j}\}$ must possess a sub-subsequence $\{x_{j_{k_\ell}}\}$ such that $x_{j_{k_\ell}} \to q$ as $\ell \to \infty$. Is it true that $x_k \to q$ as $k \to \infty$?
- 2. Let $u \in \mathcal{S}(\mathbb{R})$, show that $\|\hat{u}\|_{L^4(\mathbb{R})}^4 = 2\pi \|u * u\|_{L^2(\mathbb{R})}^2$.
- 3. Consider the set

$$X := \{ u \in L^2(\mathbb{R}^d) : \hat{u}(\xi) \equiv 0 \text{ for almost every } |\xi| > 2 \},\$$

show that X is closed and not open in $L^2(\mathbb{R}^d)$. Hint: First show that $\mathcal{F}(X)$ is closed. Then...?

4. Consider the set

$$X := \{ u \in L^1(\mathbb{R}) \cap L^2(\mathbb{R}) : \int_{\mathbb{R}} u = 0 \},$$

show that X is dense in $L^2(\mathbb{R})$. What happens if we consider the exact same question in $[-\pi, \pi]$ instead of \mathbb{R} ? **Hint**: again, try computing $\mathcal{F}(X)$ and use that \mathcal{F} is an isometry.

5. Let H be an Hilbert space and $T: H \to H$ a linear operator of which we know the eigenvalues $\{\lambda_k\}_{k\in\mathbb{N}}$ and the corresponding eigenfunctions $\{v_k\}_{k\in\mathbb{N}}$. Suppose that there exists an operator S such that $S \circ T = T \circ S = \text{Id}$. Show that $\lambda_k \neq 0$ for every $k \in \mathbb{N}$ and determine the set of eigenvalues of S.

12.2. A simple compact operator on ℓ^2 . Consider the map $T: \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ defined by

$$T((x_k)_{k\in\mathbb{N}}) = \left(\frac{x_k}{k^2}\right)_{k\in\mathbb{N}}$$

- 1. Show that T is a continuous linear operator and determine its norm.
- 2. Show that T is limit (in the operator sense) of finite rank operators. Is T compact?
- 3. Determine the set of eigenvalues and the spectrum of T.

12.3. Spectral decomposition of the Laplacian on an interval. The goal of this exercise is to show that there exists a Hilbert basis of eigenfunctions for the Laplace operator $-\frac{d^2}{dx^2}$ on $I = (0, \pi)$ with Dirichlet boundary conditions; namely there exists a Hilbert basis $\{e_n\} \subset L^2(I, \mathbb{R})$ and $\{\lambda_n\} \subset \mathbb{R}$ such that

$$\begin{cases} -e_n'' = \lambda_n e_n, \\ e_n(0) = e_n(\pi) = 0. \end{cases}$$

1. Let $f \in L^2(I, \mathbb{R})$ and consider the problem

$$\begin{cases} -u'' = f, \\ u(0) = u(\pi) = 0. \end{cases}$$
(1)

Recall that in Exercise 6.3 we showed that $B = \{\alpha \sin(kx)\}_{k\geq 1}$, where $\alpha = \sqrt{2/\pi}$, is a Hilbert basis for $L^2([0,\pi],\mathbb{R})$. Write formally both u and f as a Fourier series on $(0,\pi)$ using the basis B and write a formal solution u = u(f) of (1).

- 2. Give a sufficient condition on the Fourier coefficients of f to make sure that u is a classical solution of (1) (namely, u is at least C^2 and matches the boundary conditions)
- 3. Show that the formal solution u belongs to $L^2([0,\pi],\mathbb{R})$ and prove that the map $T: L^2([0,\pi],\mathbb{R}) \to L^2([0,\pi],\mathbb{R})$ defined by T(f) = u(f) is continuous, self-adjoint and compact.
- 4. By the Spectral Theorem, we know that there is a Hilbert space consisting of eigenfunctions of T. Show that the same eigenfunctions are eigenfunctions of $-\frac{d^2}{dr^2}$.