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The exercises below are listed by increasing difficulty, starting from warm-up questions
that serve to get acquainted with the topics, up to exam-like questions. Questions marked
with (∗) can be challenging and are more difficult than the average exam question. You
are encouraged to try and solve them by working in groups if necessary.

12.1. Closed answer questions.

1. Let (X, d) be a metric space and let q ∈ X. Assume you have a sequence {xk} ⊂ X
such that any subsequence {xkj

} must possess a sub-subsequence {xjkℓ
} such that

xjkℓ
→ q as ℓ → ∞. Is it true that xk → q as k → ∞?

2. Let u ∈ S(R), show that ∥û∥4
L4(R) = 2π∥u ∗ u∥2

L2(R).

3. Consider the set

X := {u ∈ L2(Rd) : û(ξ) ≡ 0 for almost every |ξ| > 2},

show that X is closed and not open in L2(Rd). Hint: First show that F(X) is
closed. Then...?

4. Consider the set
X := {u ∈ L1(R) ∩ L2(R) :

ˆ
R

u = 0},

show that X is dense in L2(R). What happens if we consider the exact same question
in [−π, π] instead of R? Hint: again, try computing F(X) and use that F is an
isometry.

5. Let H be an Hilbert space and T : H → H a linear operator of which we know the
eigenvalues {λk}k∈N and the corresponding eigenfunctions {vk}k∈N. Suppose that
there exists an operator S such that S ◦ T = T ◦ S = Id. Show that λk ≠ 0 for every
k ∈ N and determine the set of eigenvalues of S.

12.2. A simple compact operator on ℓ2. Consider the map T : ℓ2(N) → ℓ2(N) defined
by

T ((xk)k∈N) =
(

xk

k2

)
k∈N

.

1. Show that T is a continuous linear operator and determine its norm.

2. Show that T is limit (in the operator sense) of finite rank operators. Is T compact?

3. Determine the set of eigenvalues and the spectrum of T .

12.3. Spectral decomposition of the Laplacian on an interval. The goal of this
exercise is to show that there exists a Hilbert basis of eigenfunctions for the Laplace
operator − d2

dx2 on I = (0, π) with Dirichlet boundary conditions; namely there exists a
Hilbert basis {en} ⊂ L2(I,R) and {λn} ⊂ R such that−e′′

n = λnen,

en(0) = en(π) = 0.
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1. Let f ∈ L2(I,R) and consider the problem−u′′ = f,

u(0) = u(π) = 0.
(1)

Recall that in Exercise 6.3 we showed that B = {α sin(kx)}k≥1, where α =
√

2/π, is
a Hilbert basis for L2([0, π],R). Write formally both u and f as a Fourier series on
(0, π) using the basis B and write a formal solution u = u(f) of (1).

2. Give a sufficient condition on the Fourier coefficients of f to make sure that u
is a classical solution of (1) (namely, u is at least C2 and matches the boundary
conditions)

3. Show that the formal solution u belongs to L2([0, π],R) and prove that the map
T : L2([0, π],R) → L2([0, π],R) defined by T (f) = u(f) is continuous, self-adjoint
and compact.

4. By the Spectral Theorem, we know that there is a Hilbert space consisting of
eigenfunctions of T . Show that the same eigenfunctions are eigenfunctions of − d2

dx2 .

12. Solutions

Solution of 12.1:

1. Yes it is true. Assume by contradiction there is δ > 0 such that d(xj, q) > δ
for infinitely many j’s. Then we can extract a subsequence xjk

that cannot have
any sub-sequence converging to q, since it is always at least δ -distant from it,
contradiction.

2. We have
∥û∥4

L4 = ∥û2∥2
L2 = 2π∥u ∗ u∥2

L2 .

3. F(X) contains all L2 functions supported in the ball of radius 2, which is a closed
subspace since if vj ∈ F(X) and vj → v in L2(R) then there is an appropriate
subsequence {vjk

} which converges pointwise also almost everywhere to v, hence
v must vanish outside B2, that is v ∈ F(X). Since X = F−1F(X) and F−1 is an
isometry we must have X closed.

Since L2 is connected if X was both open and closed it would be either empty or
the full L2, which is clearly not the case.

4. F(X) contains all the Schwartz functions vanishing at ξ = 0. This class is dense in
L2 so, F−1 being an isometry, necessarily X is dense in L2.

In the case of the interval X would not be dense at all being the kernel of the
nontrivial continuous linear functional u 7→

´ π

−π
u. The point is that the linear

functional u 7→
´
R u is not bounded (nor well-defined) in L2(R).

assignment: May 29, 2024 due: June 4, 2024 2/5



d-math
Marco Badran

Analysis IV
Problem set 12

ETH Zürich
FS 2024

5. Suppose by contradiction that λk̄ = 0 for some k̄ ∈ N, this would mean that there
exists a vector vk̄ ̸= 0 such that Tvk̄ = 0. Applying S to this relation, we would find

vk̄ = S ◦ T (vk̄) = S(0) = 0,

which is a contradiction. Secondly, applying S to the relation

Tvk = λkvk

we find
λkSvk = vk

and using that λk ̸= 0 for every k ∈ N, we conclude that {1/λk} ⊆ EV (S). On the
other hand if there was an element µ ∈ EV (S) different from any {1/λk} and with
eigenfunction vµ, then applying T to

Svµ = µvµ

we would get that 1/µ is an eigenvalue of T , which is a contradiction. Therefore,
EV (S) = {1/λk}.

Solution of 12.2:

1. We readily check that

∥T (x)∥2
ℓ2 =

∞∑
k=1

x2
k

k4 ≤
∞∑

k=1
x2

k = ∥x∥2
ℓ2 .

and that, defining e1 = (1, 0, . . . ), T (e1) = e1. These two facts together imply
∥T∥ = 1.

2. For every m ≥ 1, set Tm : ℓ2(N) → ℓ2(N) as

Tm((xk)k∈N) =
(

x1,
x2

22 , . . . ,
xm

m2 , 0, 0, . . .
)

.

It is clear that the range of Tm is contained in an m-dimensional subspace of ℓ2(N),
thus Tm is compact. We check that

∥Tm − T∥ = sup
∥x∥ℓ2 =1

∥Tm(x) − T (x)∥ℓ2

= sup
∥x∥ℓ2 =1

√√√√ ∑
k≥m+1

x2
k

k4

≤ 1
(m + 1)2 sup

∥x∥ℓ2 =1

√ ∑
k≥m+1

x2
k

≤ 1
(m + 1)2 → 0

as m → ∞, i.e. Tm → T as operators. Since the class of compact operators is
closed in the topology of the operator norm, T is compact.
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3. An eigenvalue of T is an element x ∈ ℓ2(N), x ̸= 0 such that for some constant λ it
holds

T (x) = λx.

Passing to the coefficients, the eigenvalue equation reads
xk

k2 = λxk ∀k ≥ 1. (2)

If k is such that xk ̸= 0, this implies λ = 1/k2; but then (2) forces xj = 0 for every
j ̸= k. In particular, the eigenvectors of T are the elements {ek} of the standard
basis and the corresponing eigenvalues are 1/k2. Lastly by Theorem 4.38, using
compactness of T , we get that the spectrum is

σ(T ) = {0} ∪ {1/k2}k≥1.

Solution of 12.3:

1. We write formally

u(x) = α
∑
k≥1

uk sin(kx) and f(x) = α
∑
k≥1

fk sin(kx)

and we find

−u′′ = α
∑
k≥1

k2uk sin(kx) = α
∑
k≥1

fk sin(kx) = f(x).

Thus, we define for every f ∈ L2(I,R) the function defined by the expression

T (f)(x) = u(f)(x) = α
∑
k≥1

fk

k2 sin(kx).

2. Observe that, if ∑
k≥1

k2 |fk|
k2 =

∑
k≥1

|fk| < ∞

by Theorem 2.26 we find that u = T (f) is class C2 and satisfy the boundary
condition, therefore is a classical solution.

3. Observe that the series converges in L2 as a consequence of Theorem 2.13 and the
fact that

α
∑
k≥1

∥∥∥∥∥fk

k2 sin(kx)
∥∥∥∥∥

2

L2
=
∑
k≥1

(
fk

k2

)2

≤
∑
k≥1

f 2
k < ∞.

The same calculation (and the “countable Pythagora’s theorem” part of Theorem
2.13) shows also continuity of the map. Self-adjointness follows directly; if u = T (f)
and v = T (g), then

ˆ
I

T (f)g =
ˆ

I

uv′′ =
ˆ

I

u′′v =
ˆ

I

fT (g),
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where we used twice integration by parts and the boundary conditions. Compactness
can be shown directly but we present a different proof. By Corollary 1.56, L2(I,R) is
isometric to ℓ2

R(N) via the isometry that maps any Hilbert basis B into {e1, e2, . . . }.
In particular, the operator T is mapped into T̄ defined by

T̄ (x) = (xk/k2)k≥1.

By the previous exercise, T̄ is compact, which implies the same for T .

4. By differentiating twice the eigenvalue equation µkuk = Tuk we find

µku′′
k = (Tuk)′′ = −uk

thus, uk is also an eigenfunction of − d2

dx2 with eigenvalue 1/µk.
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