D-MATH	Analysis IV	ETH Zürich
Marco Badran	Problem set 12	FS 2024

The exercises below are listed by increasing difficulty, starting from warm-up questions that serve to get acquainted with the topics, up to exam-like questions. Questions marked with (*) can be challenging and are more difficult than the average exam question. You are encouraged to try and solve them by working in groups if necessary.

12.1. Closed answer questions.

- 1. Let (X, d) be a metric space and let $q \in X$. Assume you have a sequence $\{x_k\} \subset X$ such that any subsequence $\{x_{k_j}\}$ must possess a sub-subsequence $\{x_{j_{k_\ell}}\}$ such that $x_{j_{k_\ell}} \to q$ as $\ell \to \infty$. Is it true that $x_k \to q$ as $k \to \infty$?
- 2. Let $u \in \mathcal{S}(\mathbb{R})$, show that $\|\hat{u}\|_{L^4(\mathbb{R})}^4 = 2\pi \|u * u\|_{L^2(\mathbb{R})}^2$.
- 3. Consider the set

$$X := \{ u \in L^2(\mathbb{R}^d) : \hat{u}(\xi) \equiv 0 \text{ for almost every } |\xi| > 2 \},\$$

show that X is closed and not open in $L^2(\mathbb{R}^d)$. Hint: First show that $\mathcal{F}(X)$ is closed. Then...?

4. Consider the set

$$X := \{ u \in L^1(\mathbb{R}) \cap L^2(\mathbb{R}) : \int_{\mathbb{R}} u = 0 \},$$

show that X is dense in $L^2(\mathbb{R})$. What happens if we consider the exact same question in $[-\pi, \pi]$ instead of \mathbb{R} ? **Hint**: again, try computing $\mathcal{F}(X)$ and use that \mathcal{F} is an isometry.

5. Let H be an Hilbert space and $T: H \to H$ a linear operator of which we know the eigenvalues $\{\lambda_k\}_{k\in\mathbb{N}}$ and the corresponding eigenfunctions $\{v_k\}_{k\in\mathbb{N}}$. Suppose that there exists an operator S such that $S \circ T = T \circ S = \text{Id}$. Show that $\lambda_k \neq 0$ for every $k \in \mathbb{N}$ and determine the set of eigenvalues of S.

12.2. A simple compact operator on ℓ^2 . Consider the map $T: \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ defined by

$$T((x_k)_{k\in\mathbb{N}}) = \left(\frac{x_k}{k^2}\right)_{k\in\mathbb{N}}$$

- 1. Show that T is a continuous linear operator and determine its norm.
- 2. Show that T is limit (in the operator sense) of finite rank operators. Is T compact?
- 3. Determine the set of eigenvalues and the spectrum of T.

12.3. Spectral decomposition of the Laplacian on an interval. The goal of this exercise is to show that there exists a Hilbert basis of eigenfunctions for the Laplace operator $-\frac{d^2}{dx^2}$ on $I = (0, \pi)$ with Dirichlet boundary conditions; namely there exists a Hilbert basis $\{e_n\} \subset L^2(I, \mathbb{R})$ and $\{\lambda_n\} \subset \mathbb{R}$ such that

$$\begin{cases} -e_n'' = \lambda_n e_n, \\ e_n(0) = e_n(\pi) = 0. \end{cases}$$

1. Let $f \in L^2(I, \mathbb{R})$ and consider the problem

$$\begin{cases} -u'' = f, \\ u(0) = u(\pi) = 0. \end{cases}$$
(1)

Recall that in Exercise 6.3 we showed that $B = \{\alpha \sin(kx)\}_{k\geq 1}$, where $\alpha = \sqrt{2/\pi}$, is a Hilbert basis for $L^2([0,\pi],\mathbb{R})$. Write formally both u and f as a Fourier series on $(0,\pi)$ using the basis B and write a formal solution u = u(f) of (1).

- 2. Give a sufficient condition on the Fourier coefficients of f to make sure that u is a classical solution of (1) (namely, u is at least C^2 and matches the boundary conditions)
- 3. Show that the formal solution u belongs to $L^2([0,\pi],\mathbb{R})$ and prove that the map $T: L^2([0,\pi],\mathbb{R}) \to L^2([0,\pi],\mathbb{R})$ defined by T(f) = u(f) is continuous, self-adjoint and compact.
- 4. By the Spectral Theorem, we know that there is a Hilbert space consisting of eigenfunctions of T. Show that the same eigenfunctions are eigenfunctions of $-\frac{d^2}{dx^2}$.

12. Solutions

Solution of 12.1:

- 1. Yes it is true. Assume by contradiction there is $\delta > 0$ such that $d(x_j, q) > \delta$ for infinitely many j's. Then we can extract a subsequence x_{j_k} that cannot have any sub-sequence converging to q, since it is always at least δ -distant from it, contradiction.
- 2. We have

$$\|\hat{u}\|_{L^4}^4 = \|\hat{u}^2\|_{L^2}^2 = 2\pi \|u * u\|_{L^2}^2.$$

3. $\mathcal{F}(X)$ contains all L^2 functions supported in the ball of radius 2, which is a closed subspace since if $v_j \in \mathcal{F}(X)$ and $v_j \to v$ in $L^2(\mathbb{R})$ then there is an appropriate subsequence $\{v_{j_k}\}$ which converges pointwise also almost everywhere to v, hence v must vanish outside B_2 , that is $v \in \mathcal{F}(X)$. Since $X = \mathcal{F}^{-1}\mathcal{F}(X)$ and \mathcal{F}^{-1} is an isometry we must have X closed.

Since L^2 is connected if X was both open and closed it would be either empty or the full L^2 , which is clearly not the case.

4. $\mathcal{F}(X)$ contains all the Schwartz functions vanishing at $\xi = 0$. This class is dense in L^2 so, \mathcal{F}^{-1} being an isometry, necessarily X is dense in L^2 .

In the case of the interval X would not be dense at all being the kernel of the nontrivial continuous linear functional $u \mapsto \int_{-\pi}^{\pi} u$. The point is that the linear functional $u \mapsto \int_{\mathbb{R}} u$ is not bounded (nor well-defined) in $L^2(\mathbb{R})$.

5. Suppose by contradiction that $\lambda_{\bar{k}} = 0$ for some $\bar{k} \in \mathbb{N}$, this would mean that there exists a vector $v_{\bar{k}} \neq 0$ such that $Tv_{\bar{k}} = 0$. Applying S to this relation, we would find

$$v_{\bar{k}} = S \circ T(v_{\bar{k}}) = S(0) = 0,$$

which is a contradiction. Secondly, applying S to the relation

$$Tv_k = \lambda_k v_k$$

we find

$$\lambda_k S v_k = v_k$$

and using that $\lambda_k \neq 0$ for every $k \in \mathbb{N}$, we conclude that $\{1/\lambda_k\} \subseteq EV(S)$. On the other hand if there was an element $\mu \in EV(S)$ different from any $\{1/\lambda_k\}$ and with eigenfunction v_{μ} , then applying T to

$$Sv_{\mu} = \mu v_{\mu}$$

we would get that $1/\mu$ is an eigenvalue of T, which is a contradiction. Therefore, $EV(S) = \{1/\lambda_k\}.$

Solution of 12.2:

1. We readily check that

$$||T(x)||_{\ell^2}^2 = \sum_{k=1}^{\infty} \frac{x_k^2}{k^4} \le \sum_{k=1}^{\infty} x_k^2 = ||x||_{\ell_2}^2.$$

and that, defining $e_1 = (1, 0, ...), T(e_1) = e_1$. These two facts together imply ||T|| = 1.

2. For every $m \geq 1$, set $T_m: \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ as

$$T_m((x_k)_{k\in\mathbb{N}}) = \left(x_1, \frac{x_2}{2^2}, \dots, \frac{x_m}{m^2}, 0, 0, \dots\right).$$

It is clear that the range of T_m is contained in an *m*-dimensional subspace of $\ell^2(\mathbb{N})$, thus T_m is compact. We check that

$$\begin{aligned} \|T_m - T\| &= \sup_{\|x\|_{\ell^2} = 1} \|T_m(x) - T(x)\|_{\ell^2} \\ &= \sup_{\|x\|_{\ell^2} = 1} \sqrt{\sum_{k \ge m+1} \frac{x_k^2}{k^4}} \\ &\leq \frac{1}{(m+1)^2} \sup_{\|x\|_{\ell^2} = 1} \sqrt{\sum_{k \ge m+1} x_k^2} \\ &\leq \frac{1}{(m+1)^2} \to 0 \end{aligned}$$

as $m \to \infty$, i.e. $T_m \to T$ as operators. Since the class of compact operators is closed in the topology of the operator norm, T is compact.

3. An eigenvalue of T is an element $x \in \ell^2(\mathbb{N}), x \neq 0$ such that for some constant λ it holds

$$T(x) = \lambda x.$$

Passing to the coefficients, the eigenvalue equation reads

$$\frac{x_k}{k^2} = \lambda x_k \quad \forall k \ge 1.$$
(2)

If k is such that $x_k \neq 0$, this implies $\lambda = 1/k^2$; but then (2) forces $x_j = 0$ for every $j \neq k$. In particular, the eigenvectors of T are the elements $\{e_k\}$ of the standard basis and the corresponding eigenvalues are $1/k^2$. Lastly by Theorem 4.38, using compactness of T, we get that the spectrum is

$$\sigma(T) = \{0\} \cup \{1/k^2\}_{k \ge 1}.$$

Solution of 12.3:

1. We write formally

$$u(x) = \alpha \sum_{k \ge 1} u_k \sin(kx)$$
 and $f(x) = \alpha \sum_{k \ge 1} f_k \sin(kx)$

and we find

$$-u'' = \alpha \sum_{k \ge 1} k^2 u_k \sin(kx) = \alpha \sum_{k \ge 1} f_k \sin(kx) = f(x).$$

Thus, we define for every $f \in L^2(I, \mathbb{R})$ the function defined by the expression

$$T(f)(x) = u(f)(x) = \alpha \sum_{k \ge 1} \frac{f_k}{k^2} \sin(kx).$$

2. Observe that, if

$$\sum_{k \ge 1} k^2 \frac{|f_k|}{k^2} = \sum_{k \ge 1} |f_k| < \infty$$

by Theorem 2.26 we find that u = T(f) is class C^2 and satisfy the boundary condition, therefore is a classical solution.

3. Observe that the series converges in L^2 as a consequence of Theorem 2.13 and the fact that

$$\alpha \sum_{k \ge 1} \left\| \frac{f_k}{k^2} \sin(kx) \right\|_{L^2}^2 = \sum_{k \ge 1} \left(\frac{f_k}{k^2} \right)^2 \le \sum_{k \ge 1} f_k^2 < \infty.$$

The same calculation (and the "countable Pythagora's theorem" part of Theorem 2.13) shows also continuity of the map. Self-adjointness follows directly; if u = T(f) and v = T(g), then

$$\int_{I} T(f)g = \int_{I} uv'' = \int_{I} u''v = \int_{I} fT(g),$$

where we used twice integration by parts and the boundary conditions. Compactness can be shown directly but we present a different proof. By Corollary 1.56, $L^2(I, \mathbb{R})$ is isometric to $\ell^2_{\mathbb{R}}(\mathbb{N})$ via the isometry that maps any Hilbert basis B into $\{e_1, e_2, \ldots\}$. In particular, the operator T is mapped into \overline{T} defined by

$$\bar{T}(x) = (x_k/k^2)_{k \ge 1}$$

By the previous exercise, \overline{T} is compact, which implies the same for T.

4. By differentiating twice the eigenvalue equation $\mu_k u_k = T u_k$ we find

$$\mu_k u_k'' = (Tu_k)'' = -u_k$$

thus, u_k is also an eigenfunction of $-\frac{d^2}{dx^2}$ with eigenvalue $1/\mu_k$.