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The exercises below are listed by increasing difficulty, starting from warm-up questions
that serve to get acquainted with the topics, up to exam-like questions. Questions marked
with (∗) can be challenging and are more difficult than the average exam question. You
are encouraged to try and solve them by working in groups if necessary.

The question marked with BONUS is a multiple-choice question that can contribute to
extra points in the final exam; refer to the webpage for more information.

1.1. Inner product spaces.

1. Let V := Mn×n(C) be the space of n× n matrices with complex entries and define
the Fobenius product ⟨·, ·⟩ : V × V → C as

⟨A,B⟩ := Tr(AB†) =
n∑

i,j=1
aijbij

where Tr denotes the trace and B† is the Hermitian transpose of B, obtained by
transposition and complex conjugation of the entries: B† = BT . Show that (V, ⟨·, ·⟩)
is an inner-product space. Hint: first observe that Tr(A) = Tr(A†).

2. Consider n inner-product spaces (V1, ⟨·, ·⟩1), . . . , (Vn, ⟨·, ·⟩n). Is (V, ⟨·, ·⟩), where
V = V1 × · · · × Vn and

⟨(v1, . . . , vn), (w1, . . . , wn)⟩ :=
n∑

i=1
⟨vi, wi⟩i,

an inner product space?

3. Let W := Mn×n(L2(R,C)) be the space of n× n matrices whose entries are square
integrable functions from R to C. Which product would make W an inner product
space? Hint: observe that W is a “composition” of two inner product spaces.

1.2. Continuity of operations. An inner product space (V, ⟨·, ·⟩) is also a metric space
under the norm | · | :=

√
⟨·, ·⟩, hence it has a natural topology. Prove that ⟨·, ·⟩ and the

vector space operations (·,+) are continuous from V × V (resp. V × C, V × V ) endowed
with the natural product topology, to C (resp. V , V ). Recall that a natural topology in
V × V is the one induced by | · |, i.e. the one induced by the norm

|(v1, v2)|V ×V := |v1|+ |v2|.

Similarly, the norm (thus the metric and the topology) on V × C is given by

|(v, α)|V ×C := |v|+ |α|.

Hint: is there a clever way to write ⟨·, ·⟩, in order to prove continuity?

1.3. Topology of normed spaces. Determine whether the following sets X are
well-defined, open, close, subspaces and convex.
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1. In the normed space (C([0, 1]), ∥ · ∥L∞), the subset X of nowhere vanishing functions.

2. In the normed space (C([0, 1]), ∥ · ∥L2), the subset X of nowhere vanishing functions.

3. (BONUS) In the normed space (L2(0, 1), ∥ · ∥L2), the subset X = {f :
´ 1

0 f = 1}.

□ Not well defined.

□ Well defined, open and convex.

□ Well defined, closed, convex but not a linear subspace.

□ Well defined, closed and linear subspace.

4. In the normed space (L2(R), ∥ · ∥L2), the subset {f : f(x) = f(−x) for a.e. x ∈ R}.
Hint: It’s useful to recall that if uk → u in L2 then, up to picking a subsequence,
there is a null measure set N such that uk(x)→ u(x) for all x /∈ N .

5. (∗) In the normed space (L2(0, 1), ∥ · ∥L2), the subset X = {f : f ≥ 0 and
´ 1

0
2f

1+f
≥

1}. Hint: observe that the map s 7→ 2s/(1 + s) is concave for s ≥ 0.

1.4. Quantitative Cauchy Schwarz. Let H be a real inner product space, prove the
identity

|x||y| − x · y = |x||y|2

∣∣∣∣ x|x| − y

|y|

∣∣∣∣2 ≥ 0 for all x, y,∈ H.

Characterize the set C ⊂ H × H of pair of vectors that saturate the Cauchy-Schwarz
inequality, i.e. x · y = |x||y|. Plot C in the case H = R.

(∗) If x, y are ϵ-close to saturate the Cauchy Schwarz inequality, that is

(1− ϵ)|x||y| ≤ x · y,

then how close are x, y to the set C? Bound from above the number

inf
(x′,y′)∈C

|x− x′|2 + |y − y′|2 =: dist2((x, y), C).
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1. Solutions

Solution of 1.1:

1. We need to check that ⟨·, ·⟩ satisfies the three axioms of inner product space:
conjugate symmetry, linearity in the first argument and positive definiteness. First
observe that the property Tr(A) = Tr(A†) follows directly from the fact that the
trace is invariant by transposition. Remark also that Hermitian transposition is an
involution, i.e. (B†)† = B. Then

⟨A,B⟩ = Tr(AB†) = Tr((AB†)†) = Tr((B†)†A†) = Tr(BA†) = ⟨B,A⟩

and hence conjugate symmetry holds. Linearity in the first argument follows trivially
by linearity of the trace and, if A ̸= 0,

Tr(AA†) =
n∑

i,j=1
aijaij =

n∑
i,j=1
|aij|2 > 0.

which proves positive definiteness.

2. Yes, it is. Denote v = (v1, . . . , vn) and w = (w1, . . . , wn). We readily check that

⟨v, w⟩ =
∑

i

⟨vi, wi⟩i =
∑

i

⟨wi, vi⟩i = ⟨w, v⟩

and

⟨αv + βu,w⟩ =
∑

i

⟨αvi + βui, wi⟩i =
∑

i

α⟨vi, wi⟩i + β⟨ui, wi⟩i = α⟨v, w⟩+ β⟨u,w⟩

which prove the first two axioms. Positive definiteness follows from the fact that
v ̸= 0 ⇐⇒ vk ̸= 0 for some k ∈ {1, . . . , n}. Thus

⟨v, v⟩ =
n∑

i=1
⟨vi, vi⟩i ≥ ⟨vk, vk⟩k > 0.

3. Let F = (fij)ij and G = (gij)ij be two matrices of square integrable functions.
Define

⟨F,G⟩ =
n∑

i,j=1

ˆ
R
fij(x)gij(x)dx.

This product is a natural choice since it’s the “composition” of the Frobenius product
(defined above) and the L2 inner product. It’s direct to check that all the axioms of
inner product space hold.

Remark: this “composition trick” was implicitly used also in part 2. Indeed the
inner product there is a composition of the ones of the respective Vi and the one in
Rn, given by a · b = ∑

i aibi.
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Solution of 1.2: The sum is continuous (Lipschitz, even) by the triangular inequality

|(v1 + v2)− (u1 + u2)| ≤ |v1 − u1|+ |v2 − u2| = |(v1, v2)− (u1, u2)|V ×V .

So if (v1, v2) and (u1, u2) are ϵ-close in V × V (i.e., the right hand side is smaller than ϵ)
then v1 + v2 is ϵ-close to u1 + u2 in V . Multiplication by a scalar is also continuous by
homogeneity and the triangular inequality

|αv − α′v′| ≤ |α− α′||v|+ |α′||v − v′| ≤ max{|α′|, |v|}|(v, α)− (v′, α′)|V ×C

which proves the continuity of the multiplication by a scalar.

By the polarisation identities the scalar product then needs to be continuous, since it is a
composition of continuous functions.

Solution of 1.3:

1. It is well defined and open, but neither close nor convex (and hence not a linear
subspace as well). We show openness: if u ∈ X then δ := min[0,1] |u| is strictly
positive, so for any other v ∈ C([0, 1]), with ∥u− v∥L∞(0,1) < δ/100, we find for all
x ∈ [0, 1] that

|v(x)| ≥ |u(x)| − ∥u− v∥L∞(0,1) ≥ δ − δ

100 > δ/2,

so v ∈ X. It is not closed since the functions fk = 2−k belong to X but their limit
does not, and X is not convex since u ∈ X,−u ∈ X, u+ (−u) = 0 /∈ X.

2. It is not open nor closed and not convex.

It is not closed nor convex by the same examples as above.

It is not open because if u ∈ X, u > 0 and ϵ > 0 small then uϵ(x) := min{x/ϵ, u(x)}
does not lie in X, but it is as close as we want to u since

lim sup
ϵ
∥u− uϵ∥2

L2(0,1) = lim sup
ϵ

ˆ
{x:u(x)>x/ϵ}

(x/ϵ)2 dx

≤ lim sup
ϵ

ˆ
{x:u(x)>x/ϵ}

u(x)2 dx = 0,

by dominated convergence, since

sup
0<ϵ<1/2

1{x:u(x)>x/ϵ}u(x)2 ≤ u(x)2 ∈ L1(0, 1)

and for each fixed z we have limϵ 1{x:u(x)>x/ϵ}(z) = 0.

3. X is well-defined, closed and convex, but not a linear space as 0 /∈ X. It’s well-
defined since L2(0, 1) ⊂ L1(0, 1). It’s closed because if uk ∈ X and uk → u in L2

then ∣∣∣ ˆ uk −
ˆ
u

∣∣∣ ≤ ˆ |uk − u| = ∥u− uk∥L1 ≤ ∥uk − u∥L2 → 0.
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This means that
´
u = limk

´
uk = limk 1 = 1. This proves that u ∈ X, hence X

contains its accumulation points, hence it is closed. Since X ̸= L2, X is closed
and L2 is connected, then X cannot be open; alternatively you can show that the
complement of X is not closed but taking, e.g., fk = 1 + 2−k.

Convexity is immediately checked by linearity of the integral

u ∈ X, v ∈ X, t ∈ [0, 1]⇒ˆ
(tu+ (1− t)v) = t

ˆ
u+ (1− t)

ˆ
v = t+ 1− t = 1

⇒ tu+ (1− t)v ∈ X.

4. It is well-defined, closed and a linear subspace.

Well-defined because if u and u′ agree almost everywhere then also u(−·) and u′(−·)
do. This is because if A ⊂ R has full measure then also −A has full measure and so
does A ∩ (−A).

Closed since arguing by sub-sequences we find N ⊂ R with |N | = 0 such that

uk(x)→ u(x) and uk(−x)→ u(−x) for all x ∈ R \N.

Thus 0 ≡ uk(x)− uk(−x)→ u(x)− u(−x) = 0.

The fact that 0 ∈ X and is closed by linear combinations is immediate to check, let
us refresh the full argument which you probably have seen in Analysis III: if

u(x) = u(−x) for all x ∈ R \Nu and v(x) = v(−x) for all x ∈ R \Nv,

with |Nu| = |Nv| = 0 then for all x ∈ R \ (Nu ∪Nv) we have

αu(x) + βv(x) = αu(−x) + βv(−x).

5. X is well defined, closed and convex.

Well defined because for all u ∈ L2, u ≥ 0 it holds
ˆ 1

0

|2u(t)|
|1 + u(t)| dt ≤

ˆ 1

0
2 dt = 2

as for any nonnegative number |2u/(1 + u)| ≤ 2.

Convex because the function ψ : s 7→ 2s
1+s

is concave for s ∈ [0,∞). So if u, v ∈ X
and t ∈ [0, 1] we have for almost every x

tu(x) + (1− t)v(x)
1 + tu(x) + (1− t)v(x) = ψ(tu(x) + (1− t)v(x))

≥ tψ(u(x)) + (1− t)ψ(v(x)) = t
u(x)

1 + u(x) + (1− t) v(x)
1 + v(x) ,
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integrating both sides of this inequality we find
ˆ 1

0
2 tu(x) + (1− t)v(x)

1 + tu(x) + (1− t)v(x) ≥ t

ˆ 1

0

2u(x)
1 + u(x)+(1−t)

ˆ 1

0

2v(x)
1 + v(x) ≥ t·1+(1−t)·1 = 1,

which means that tu+ (1− t)v ∈ X.

To check closeness we pick a sequence uk ∈ X with uk → u in L2. We want to show
that also u ∈ X. We take a subsequence (which we don’t re-label) and gain that
also uk(x)→ u(x) for all x ∈ (0, 1) \N with |N | = 0. Since uk were nonnegative we
find that also u ≥ 0 a.e. It remains to show that

´
u

1+u
≥ 1. To do so we invoke the

dominated convergence theorem, i.e. since the integrands are bounded by a common
function

2|uk|
|1 + uk|

≤ 2 uniformly in k,

we can exchange pointwise limit and integral and find
ˆ 1

0

2u
1 + u

= lim
k

ˆ 1

0

2uk

1 + uk

≥ 1.

Solution of 1.4: The identity is equivalent to prove that

2|x|2|y|2 − 2(x · y)|x||y| ?= |x|y| − y|x||2

which is straightforward to check expanding the square at the right hand side.

For the first part, using the identity one finds

C = {(αξ, βξ) : α ≥ 0, β ≥ 0, |ξ| = 1}.

That is, x, y need to be parallel and equi oriented in order to saturate C.S.

For the second part, we plug-in the inequality in the previous identity and get

|x||y|
2

∣∣∣∣ x|x| − y

|y|

∣∣∣∣2 ≤ ϵ|x||y|,

which gives ∣∣∣∣ x|x| − y

|y|

∣∣∣∣ ≤ √2ϵ.

Since x/|x| and y/|y| are the directions of the vectors x, y this is telling us that if we
ϵ-saturate the C.S. inequality, then we are O(

√
ϵ) far away from the equality case (i.e., x

and y being parallel).

This would be already a somewhat satisfying answer, but we want to estimate

dist((x, y), C)2 := inf
(x′,y′)∈C

|x− x′|2 + |y − y′|2.
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In order to do so, we plug x′ ← |x|
|y|y and y′ ← y (and the symmetric assignment) to find

dist((x, y), C)2 ≤ min{|x|2, |y|2}
∣∣∣∣ x|x| − y

|y|

∣∣∣∣2 ≤ 2ϵmin{|x|2, |y|2} ≤ 2ϵ|x||y|,

where in the last inequality we used that for any pair of nonnegative numbers min{a, b} ≤√
ab.

In other words, we proved the quantitative Cauchy-Schwarz inequality:

0 ≤ 1
2dist((x, y), C)2 ≤ |x||y| − x · y for all x, y,∈ H.
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