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The exercises below are listed by increasing difficulty, starting from warm-up questions
that serve to get acquainted with the topics, up to exam-like questions. Questions marked
with (∗) can be challenging and are more difficult than the average exam question. You
are encouraged to try and solve them by working in groups if necessary.

The question marked with BONUS is a multiple-choice question that can contribute to
extra points in the final exam; refer to the webpage for more information.

2.1. Scalar products and Hilbert spaces. Prove or disprove whether the following
pairs (vector space, bilinear form) are Hilbert spaces. Additionally, write down what the
squared norm of a vector is in each case.

1. V := L2(R;C) and ⟨u, v⟩ :=
´
R u(t)v̄(t) dt

1+t2

2. V := {real polynomials of degree at most N} and1 ⟨p, q⟩ := p( d
dx

)|x=0q. Hint: ob-
serve that

(
d

dx

)j

x=0
xk = δkj k!

3. V := L1(0, 1) and ⟨u, v⟩ :=
´ 1

0 u(x)v(x) dx.

4. V := Qd and ⟨x, y⟩ := ∑d
k=1 xkyk.

2.2. Inner product from the norm. Let

V :=
{
u ∈ C2((0, 1)) ∩ C([0, 1]) : u(0) = 0

}
Determine which of the following maps ∥ · ∥ : V → R defines a norm over V (no need to
check completeness)2.

A. ∥u∥A =
(´ 1

0 |u′′(x)|2dx
)1/2

B. ∥u∥B =
(´ 1

0 |u′(x)|2dx
)1/2

C. ∥u∥C =
(´ 1

0 |u′(x)|3dx
)1/3

D. ∥u∥D =
(´ 1

0

´ 1
0

|u(x)−u(y)|2
|x−y|2 dxdy

)1/2

(BONUS) Which of the above expression defines a norm on V that arises from an inner
product space? You can choose multiple answers. Hint: Recall the parallelogram law.

□ A □ B □ C □ D

1If p(X) is a polynomial, then p( d
dx )|x=0 is the differential operator obtained replacing X by d

dx and
then evaluating at x = 0. Example: if p(X) = X2 + 3 then p( d

dx )|x=0q = q′′(0) + 3q(0).
2Recall Minkowski inequality: for p ∈ (1, +∞) and f, g ∈ Lp(X, µ), then (

´
X

|f + g|pdµ)1/p ≤
(
´

X
|f |pdµ)1/p + (

´
X

|g|pdµ)1/p.
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2.3. Legendre Polynomials I. Consider the Hilbert space H := L2((−1, 1), dx). Apply
the Gram-Schmidt algorithm to the ordered set {1, x, x2} ⊂ H, and find three orthonormal
polynomials e0(x), e1(x), e2(x).

2.4. Legendre Polynomials II. Consider in the Hilbert space H := L2((−1, 1), dx) the
polynomials

P0 := 1, Pk(x) := Dk((x2 − 1)k) for k ≥ 1,

where D := d/dx. The first goal is to prove that {Pj}j≥0 is an orthonormal system. You
can follow this outline

1. Show that each Pk has degree k and show that DkPk(x) = (2k)!.

2. Show that for 0 ≤ k′ < k the function Dk′((x2 − 1)k) vanishes at ±1 (Hint: use the
Leibniz formula: Dk(f · g) = ∑k

j=0

(
k
j

)
Djf · Dk−jg);

3. Use the previous point and multiple integration by parts to show that if 0 ≤ k < k′

then ˆ 1

−1
Pk(x)Pk′(x) dx = 0.

In order to have a orthonormal basis we need to compute ∥Pk∥L2(−1,1). You can follow
this outline

4. Given for granted3 that B(k + 1, k + 1) :=
´ 1

0 sk(1 − s)k ds = (k!)2

(2k+1)! , show that

ˆ 1

−1
(x2 − 1)k dx = (−1)k 22k+1(k!)2

(2k + 1)!

5. Using multiple times integration by parts and the previous points show that

∥Pk∥2
L2(−1,1) =

ˆ 1

−1
Pk(x)2 dx = (−1)k

ˆ 1

−1
(x2 − 1)kDkPk(x) dx = 22k+1(k!)2

2k + 1

6. (∗) Prove that B(n, m) = (n−1)!(m−1)!
(n+m−1)! for all n, m ≥ 1. Hint: you might want to

prove it first for B(0, m) and then find a formula (integrating by parts) that relates
B(n, m) with B(n − 1, m + 1) and proceed inductively.

7. Finally, (double) check that indeed

e0(x) = P0(x)
∥P0∥L2(−1,1)

, e1(x) = P1(x)
∥P1∥L2(−1,1)

and e2(x) = P2(x)
∥P2∥L2(−1,1)

,

where e0, e1, e2 are the polynomials of exercise 2.3. Is that a coincidence that they
are the same?

3This is a value of the so-called Euler’s Beta function B(x, y) :=
´ 1

−1 tx−1(1 − t)y−1 dt = B(y, x).
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2. Solutions

Solution of 2.1:

1. This is a legit inner product space and the proof of it is a simple consequence of the
properties of inegrals and complex conjugation. It is not complete: the completion
is the space L2(R, µ) with respect to the measure µ = dt

1+t2 , essentially by definition.
To see this concretely take uϵ(t) := e−ϵt2 ∈ V and we have that uϵ → 1 in with
respect to the norm induced by the inner product

∥f∥2 =
ˆ
R

|f(t)|2
1 + t2 dt.

Indeed ˆ
R

|uϵ(t) − 1|2

1 + t2 dt → 0

because of dominated convergence theorem, since uϵ ≤ 1 ∈ L2(R, µ). But then V
cannot be complete because {uϵ} is Cauchy (being convergent), but 1 /∈ V .

2. We first check that this is an inner product space, then completeness follows from
finite dimensionality. Linearity follows from the linearity of differentiation, so we
just have to check that the given bilinear form is positive definite and symmetric.
For p, q ∈ V we write

p(X) =
N∑

j=0
pjX

j, q(X) =
N∑

j=0
qjX

j,

and compute

⟨p, q⟩ =
N∑

j=0
pjq

(j)(0) =
N∑

j=0
pjqj j!

which is clearly symmetric in p ↔ q. We used that
(

d
dx

)j

x=0
xk = δkj k!. We remark

that in the basis [1, X, . . . , XN ] the scalar product is given by the matrix

diag[0!, 1!, 2!, . . . , N !],

which is positive definite having positive eigenvalues (recall 0! = 1). The norm
squared is

∥p∥2 =
N∑

j=0
|pj|2 j!.

3. No, the given bilinear form is not even well defined as the integral might diverge.
For instance, if u(x) = x−1/2 then ⟨u, u⟩ = +∞.

4. It is not even an R-vector space, as the multiplication of a rational number by a
real number does not give, in general, a rational number.

If we think Qd as a vector space over Q the scalar product is well defined, so we
have a norm, but the resulting space is not complete, for the same reason for which
Q is not complete as a subset of R.
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Solution of 2.2: The only one that is not a norm is A, since positivity fails. Indeed, the
function f(x) = x belongs to V and ∥f∥A = 0, but f ≠ 0. The norm axioms for the norms
B, C and D are readily checked. For any • ∈ {B, C, D}, ∥ · ∥• ≥ 0 and for any scalar α

∥αu∥• = |α|∥u∥•.

Triangle inequality follows from Minkowski inequality in Lp spaces. Finally, by nonnega-
tivity of the integral and continuity of the function we infer that

• If ∥u∥B = 0 or ∥u∥C = 0, then u′ ≡ 0 and since u(0) = 0 we deduce u ≡ 0.

• If ∥u∥D = 0, then u(x) − u(y) = 0 for every x, y ∈ [0, 1], thus u is constant. Again,
using that u(0) = 0 we infer that u ≡ 0.

The norms arising from an inner product space are B and D. In fact the parallelogram
law holds: for B we have

∥u + v∥2
B + ∥u − v∥2

B =
ˆ 1

0
|u′ + v′|2 +

ˆ 1

0
|u′ − v′|2

=
ˆ 1

0
|u′|2 +

ˆ 1

0
|v′|2 + 2

ˆ 1

0
u′v′d

+
ˆ 1

0
|u′|2 +

ˆ 1

0
|v′|2 − 2

ˆ 1

0
u′v′d

= 2
ˆ 1

0
|u′|2 + 2

ˆ 1

0
|v′|2 = 2∥u∥2

B + 2∥v∥2
B

and a completely analogous calculation holds for D. ∥·∥C does not satisfy the parallelogram
law, indeed take for instance u(x) = x and v(x) = x2

2 . Then

∥u + v∥2
C + ∥u − v∥2

C =
(ˆ 1

0
|1 + x|3dx

)2/3

+
(ˆ 1

0
|1 − x|3dx

)2/3

= (15/4)2/3 + (1/4)2/3

2∥u∥2
C + 2∥v∥2

C = 2
(ˆ 1

0
dx

)2/3

+ 2
(ˆ 1

0
|x|3dx

)2/3

= 2 + 2(1/4)2/3

and the two values differ.

EDIT: It was correctly pointed out by some students that in the space V the above
norms are not necessarily well defined, as the example of

√
x (or similar) shows. This is

amended by requiring the derivatives of u to be continuous in the whole closed set [0, 1].
Since this was not specified, giving as answer B and D, B, D or none will grant the point.

Solution of 2.3: The polynomials 1 and x are already orthogonal in H for parity reasons,
so normalizing them we find

e0(x) = 1/
√

2, e1(x) =
√

3
2x.
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Also x2 and x are orthogonal and

⟨x2, e0(x)⟩ = 1√
2

ˆ 1

−1
x2 dx =

√
2/3, ⟨x2, e1(x)⟩ =

√
3
2

ˆ 1

−1
x3 dx = 0.

and so
Pspan{e0,e1}⊥(x2) = x2 − ⟨x2, e0⟩e0 − ⟨x2, e1⟩e1 = x2 − 1/3.

Now we compute the norm ˆ 1

−1
(x2 − 1/3)2 dx = 8/45,

and we find e2(x) =
√

5
2
√

2(3x2 − 1).

Solution of 2.4: We start with proving that it is an orthonormal system.

1. It is known that taking the derivative of a polynomial of degree k yields a polynomial
of degree k −1. Since (x2 −1)k has degree 2k, taking k derivatives gives a polynomial
of degree 2k − k = k.

Using the binomial formula we have
DkPk = D2k((x2 − 1)k) = D2kx2k + D2k(poly of degree 2k − 1)︸ ︷︷ ︸

=0

= (2k)!.

2. Let us do the computation for k′ = k − 1. We compute the derivative with Leibniz’
formula

Dk−1((x2 − 1)k) = Dk−1((x + 1)k(x − 1)k)

=
k−1∑
j=0

(
k − 1

j

)
Dj((x − 1)k)Dk−1−j((x + 1)k)

=
k=1∑
j=0

ck,j(x − 1)k−j(x + 1)j+1,

for some combinatorial constants cn,k ∈ N. Evaluating at x = 1 (or at x = −1) we
see that all the terms in the sum vanish as k − j ≥ 1 (and j + 1 ≥ 1).

3. We integrate by parts k + 1 times, using that the boundary terms vanish thanks to
the previous pointˆ 1

−1
Pk Pk′ =

ˆ 1

−1
Dk((x2 − 1)k)Dk′((x2 − 1)k′)

=
[
Dk((x2 − 1)k)Dk′−1((x2 − 1)k′)

]+1

−1︸ ︷︷ ︸
=0

−
ˆ 1

−1
Dk+1((x2 − 1)k)Dk′((x2 − 1)k′)

= · · ·

= (−1)k+1
ˆ 1

−1
D2k+1((x2 − 1)k)︸ ︷︷ ︸

=0

Dk′−k−1((x2 − 1)k′)
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4-5 We compute the norm doing the same computation we just did, but integrating by
parts k times:

ˆ 1

−1
P 2

k = (−1)k

ˆ 1

−1
D2k((x2 − 1)k)(x2 − 1)k dx

= (−1)k(2k)!
ˆ 1

−1
(x2 − 1)k dx [x + 1 = 2t]

= (−1)k(2k)!22k+1
ˆ 1

0
tk(t − 1)k dt

= (2k)! 22k+1
ˆ 1

0
tk(1 − t)k dt = (2k)!22k+1B(k + 1, k + 1).

6. We need to prove the formula for B(k + 1, k + 1), and it turns out to be easier to
prove it directly for B(n, m). We set for simplicity Bn,m := B(n + 1, m + 1) and
integrating by parts once again

Bn,m :=
ˆ 1

0
tn(1 − t)m = 1

n + 1

ˆ 1

0
(tn+1)′(1 − t)m

= − 1
n + 1

ˆ 1

0
tn+1((1 − t)m)′ = m

n + 1

ˆ 1

0
tn+1(1 − t)m−1 = m

n + 1Bn+1,m−1.

Iterating this formula we immediately find

Bn,m = m!
(n + 1) . . . (n + m)Bn+m,0 = n!m!

(n + m)!

ˆ 1

0
sn+m ds = n!m!

(n + m + 1)! ,

which gives ˆ 1

0
tk(1 − t)k dt = Bk,k = (k!)2

(2k + 1)! .

7. Putting everything together, we have proven
ˆ 1

−1
P 2

k = 22k+1(k!)2

2k + 1 .

Let us compute the first three

P0(x) = 1,
P0

∥P0∥
= 1/

√
2 = e0

P1(x) = 2x,
P1

∥P1∥
=
√

3
2x = e1

P2(x) = 12x2 − 4,
P2

∥P2∥
=

√
5

2
√

2
(3x2 − 1) = e2.

Of course this is no coincidence. There is only one orthonormal basis {ek}k≥0
of L2(−1, 1) such that each ek is a polynomial of degree k with positive leading
coefficient. These are called the Legendre Polynomials.
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