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The exercises below are listed by increasing difficulty, starting from warm-up questions
that serve to get acquainted with the topics, up to exam-like questions. Questions marked
with (∗) can be challenging and are more difficult than the average exam question. You
are encouraged to try and solve them by working in groups if necessary.

The question marked with BONUS is a multiple-choice question that can contribute to
extra points in the final exam; refer to the webpage for more information.

4.1. Closed answer questions.

1. In order to prove that a linear map T : L2(R) → L2(R) is continuous it is enough to
prove that ∥Tu∥L2(R) ≤ 100, provided u ∈ L2(R) and ∥u∥L2(R) ≤ 7. True or false?

2. Give an example of a nonzero continuous linear functional on L2(0, 1).

3. Alice is given a bounded linear functional ϕ ∈ L2(0, 1)∗, and Bob is given a bounded
linear functional ψ ∈ L2(0, 1)∗. They check that ϕ(u) = ψ(u) for all u ∈ C([0, 1]).
Is it necessarily true that ϕ = ψ?

4. If ϕ is a continuous linear functional on an Hilbert space H, then kerϕ is a closed
vector subspace of H. True or false?

5. The inequality “∥(uk)∥ℓ2(N) ≤ ∥(uk)∥ℓ1(N) for all sequences (uk)”, can be equivalently
phrased as “the inclusion ℓ1(N) ↪→ ℓ2(N) is 1-Lipschitz”. True or false?

4.2. Norm of the multiplication operator. For u ∈ H := L2(0, 1) consider the
operator

Ma : u(x) 7→ a(x)u(x),

where a : (0, 1) → R is a given measurable function. We want to prove thatMa is continuous
from H in itself if and only if a ∈ L∞(0, 1), in which case ∥Ma∥L(H) = ∥a∥L∞(0,1).

1. Given for granted the claim, what is ∥Mexp∥L(H)?

2. Prove the inequality
ˆ 1

0
a2(x)u2(x) dx ≤ sup

(0,1)
|a|2
ˆ 1

0
u2(x) dx,

and deduce that ∥Ma∥L(H) ≤ ∥a∥L∞(0,1).

3. Show that if E ⊂ (0, 1) is measurable with |E| > 0, then

∥Ma1E∥2
L2(0,1)

∥1E∥2
L2(0,1)

= 1
|E|

ˆ
E

a2(x) dx.

4. Choosing properly the measurable set E in the previous point, prove that ∥Ma∥L(H) ≥
∥a∥L∞ . Hint: try with E =“the set where |a| is large” and recall the definition of
essential supremum.
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4.3. Bounded Linear Operators I. Prove that each of the following linear operators is
bounded from ℓ2(N) in itself 1. Draw the infinite matrix that represents each of them.

1. (Shift operator) S : (u0, u1, u2, . . .) 7→ (0, u0, u1, . . .).

2. (Diagonal matrix) Mλ : (u0, u1, u2, . . .) 7→ (λ0u0, λ1u1, λ2u2, . . .), where {λj}j≥0 is
some given sequence such that supj≥0 |λj| = 7.

3. T : (u0, u1, u2, . . .) 7→ (u0 − u1, u1 − u2, u2 − u3, . . .).

4. (Hilbert-Schmidt matrix) For each k ≥ 0 set (Au)k := ∑
j≥0 Ak,juj , where the infinite

matrix {Ai,j}i≥0,j≥0 satisfies ∑
i,j

|Ai,j|2 < +∞.

Hint: for each k:
( ∑

j≥0 Ak,juj

)2
≤

( ∑
j≥0 A

2
k,j

)( ∑
j≥0 u

2
j

)
, by Cauchy Schwarz.

4.4. Bounded or unbounded?. (BONUS) The following operators are well defined
bounded operators between Hilbert spaces. True or false?

1. T : ℓ2(N) → ℓ2(N) given by (Tx)k = log(1/k)xk.

2. T : ℓ2(N) → ℓ2(N) given by (Tx)k = xk/(|xk| + 1)

3. T : L2(0, 1) → L2(0, 1) given by Tu = u2

4. T : L2(a, b) → L2(a, b) given by Tu =
√
u

4.5. Bounded linear operators II. Prove the following inequalities and interpret them
as the continuity of a suitable linear map between suitable normed vector spaces:

1. For all u ∈ L2(R) it holds
ˆ 1

0
u2(t) dt ≤

ˆ
R
u2(t) dt.

2. For each polynomial p(X) = p0 + p1X + . . .+ PkX
N it holds

max
x∈[−1,1]

|p(x)| ≤
N∑

j=0
|pj|.

3. For all u ∈ C1([0, 1]) with u(0) = 0 it holds

max
x∈[0,1]

|u(x)| ≤
ˆ 1

0
|u′(t)| dt.

Hint: use the fundamental Theorem of Calculus, i.e., that a function is the integral
of its derivative...

1Concretely, you have to establish that the ℓ2 size of the image of any sequence (uk) is bounded by a
multiple of the ℓ2 size of (uk) itself.
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4. Solutions

Solution of 4.1: 4.1.1. True. If we can prove it then we can prove that T is bounded,
exploiting homogeneity. Precisely, if v ∈ L2(R) then u := v/∥v∥ has norm ∥u∥ = 1 < 7,
hence by positive homogeneity

∥Tv∥/∥v∥ = ∥Tu∥ ≤ 100,

this gives ∥Tv∥ ≤ 100∥v∥. Since v was arbitrary, this proves that T is bounded.

4.1.2. Take any nonzero ϕ ∈ L2 and consider the map

Tϕ(u) := ⟨u, ϕ⟩L2 =
ˆ
R
ϕ(x)u(x)dx.

This map is continuous by Cauchy–Schwartz and nonzero since

Tϕ(ϕ) = ∥ϕ∥2 > 0.

4.1.3. Yes, it is true. In general, two continuous functions that agree on a dense set
must agree everywhere. In this case, C([0, 1]) is dense in L2(0, 1) (with respect to the L2

topology) and ϕ, ψ are both continuous (being bounded) in the same topology.

4.1.4. True, the pre-image of a closed set via a continuous functions is closed. In this
case kerϕ = ϕ−1({0}), ϕ is continuous and {0} is closed.

4.1.5. True. If we consider the inclusion ι : ℓ1(N) → ℓ2(N), then by definition of “operator
norm” we have

∥ι∥L(ℓ1(N),ℓ2(N)) = sup
(uk)

∥u∥ℓ2(N)

∥u∥ℓ1(N)
, (1)

so the inequality tells us ∥ι∥L(ℓ1(N),ℓ2(N)) ≤ 1. But then, as remarked in class, the operator
norm equals the Lipschitz constant, hence also Lip(ι) ≤ 1.

Conversely, the same remark gives that if Lip(ι) ≤ 1, then ∥ι∥L(ℓ1(N),ℓ2(N)) ≤ 1, then (1)
holds, that is the inequality between sequences holds.

Solution of 4.2: 4.2.1. Given for granted the claim

∥Mexp∥L(H) = ∥ exp ∥L∞(0,1) = sup
x∈(0,1)

|ex| = e.

4.2.2. This is (a very simple case) of Hölder inequality

∥fg∥L1 ≤ ∥f∥Lp∥g∥Lq , where p, q ∈ [1,∞], 1
p

+ 1
q

= 1,

with f = a2, g = u2, p = ∞, q = 1. Alternatively, this inequality arises integrating w.r.t. x
the pointwise inequality

a2(x)u2(x) ≤ u2(x) sup
x′∈(0,1)

a2(x′) for all x ∈ (0, 1).
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Since ∥Mau∥2
H =
´ 1

0 a
2u2 and ∥u∥2

H =
´ 1

0 u
2 then the inequality is saying

∥Mau∥2
H

∥u∥2
H

≤ ∥a2∥L∞(0,1) = ∥a∥2
L∞(0,1) for all u ∈ H,

which means (by definition) that ∥Ma∥L(H) ≤ ∥a∥L∞ .

4.2.3. Once again this follows directly computing

∥Ma1E∥2
L2(0,1) =

ˆ 1

0
a212

E =
ˆ

E

a2,

∥1E∥2
L2(0,1) =

ˆ 1

0
12

E = |E|.

4.2.4. Pick any µ > 0 such that |{|a| ≥ µ}| > 0, then the previous computation with
E := {|a| > µ} gives

∥Ma1E∥2
L2(0,1)

∥1E∥2
L2(0,1)

= 1
|E|

ˆ
E

a2(x)︸ ︷︷ ︸
≥µ2

dx ≥ µ2,

this proves ∥Ma∥L(H) ≥ µ. Then we conclude recalling that the essential supremum of a
measurable function is defined as the largest such µ we can take:

∥a∥L∞(0,1) = esssup|a| = sup
(
{µ > 0 : |{|a| ≥ µ}| > 0} ∪ {0}

)
.

Solution of 4.3:
4.3.1. The operator is bounded since for any sequence u ∈ ℓ2(N) we have

∥Su∥2
ℓ2(N) = 02 +

∞∑
k=0

|uk|2 =
∞∑

k=0
|uk|2 = ∥u∥2

ℓ2(N) .

The infinite matrix of S is

S =



0 0 0 0 · · ·
1 0 0 0 · · ·
0 1 0 0 · · ·
0 0 1 0 · · ·
... ... ... ... . . .

 .

4.3.2. The operator is bounded since for any sequence u ∈ ℓ2(N) we have

∥Mλu∥2
ℓ2(N) =

∞∑
k=1

|λkuk|2 =
∞∑

k=1
|λk|2|uk|2 ≤

∞∑
k=1

72|uk|2 = 49 ∥u∥2
ℓ2(N)
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The infinite matrix of Mλ is

Mλ =



λ0 0 0 0 · · ·
0 λ1 0 0 · · ·
0 0 λ2 0 · · ·
0 0 0 λ3 · · ·
... ... ... ... . . .

 .

4.3.3. Note that C with the Euclidean inner product forms a Hilbert space. This means
that operator is bounded since for any sequence u ∈ ℓ2(N) we can employ the parallelogram
identity on C to compute

∥Tu∥2
ℓ2(N) =

∞∑
k=1

|uk − uk−1|2

≤
∞∑

k=1
|uk − uk−1|2 + |uk + uk−1|2

=
∞∑

k=1
2|uk|2 + 2|uk−1|2

≤ 4
∞∑

k=0
|uk|2 = 4 ∥u∥2

ℓ2(N) .

The infinite matrix of T is

T =



1 −1 0 0 · · ·
0 1 −1 0 · · ·
0 0 1 −1 · · ·
0 0 0 1 · · ·
... ... ... ... . . .

 .

4.3.4. To show that the operator is bounded, we take any sequence u ∈ ℓ2(N) and
compute its square norm under the operator A to get

∥Au∥2
ℓ2(N) =

∞∑
k=0

|(Au)k|2 =
∞∑

k=0
|

∞∑
j=0

Akjuj|2.

As the hint suggests, we employ the Cauchy-Schwarz inequality to find

∞∑
k=0

|
∞∑

j=0
Akjuj|2 ≤

∞∑
k=0

 ∞∑
j=0

|Akj|2 ·
∞∑

j=0
|uj|2

 .

Combining the two above equations and taking the square root shows that the map is
bounded by

∥Au∥ℓ2(N) ≤

 ∞∑
k,j=0

|Akj|2
 1

2

∥u∥ℓ2(N)
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The infinite matrix of A is the matrix itself, i.e.

A =



A00 A01 A02 A03 · · ·
A10 A11 A12 A13 · · ·
A20 A21 A22 A23 · · ·
A30 A31 A32 A33 · · ·

... ... ... ... . . .

 .

Solution of 4.4:

1. T is not bounded. Indeed, letting {ek}∞
k=1 be the standard basis,

∥T (ek)∥2
ℓ2 =

∞∑
j=1

| log(1/j)δkj|2 = log2 k.

This proves that ∥T (ek)∥ℓ2 → ∞ as k → ∞, which contradicts boundedness.

2. T is bounded, indeed

∥Tx∥2 =
∞∑

k=1
|(Tx)k|2 =

∞∑
k=1

x2
k

(|xk| + 1)2 ≤
∞∑

k=1
x2

k = ∥x∥2.

3. T is not bounded, indeed ∥Tu∥L2 = +∞ for u(x) = x−1/4 ∈ L2(0, 1).

4. T is unbounded, take for instance the sequence un ≡ 1/n.

Edit: there was a mistake in the solution of 4.4.4. in the version posted on March 27.
This is the corrected version.

Solution of 4.5: 4.5.1. The inequality follows from the monotonicity of the integral and
u2 ≥ 0. It can be interpreted as the fact that the restriction operator

ρ : L2(R) → L2(0, 1), u 7→ u|(0,1),

(which is linear) is bounded and, more precisely, ∥ρ∥L(L2(R);L2(0,1)) ≤ 1.

4.5.2. By the triangular inequality, for each x ∈ [−1, 1] we have

|p(x)| ≤
N∑

j=0
|pj| |xj|︸︷︷︸

≤1

≤
N∑

j=0
|pj|,

so taking the supremum over x we find the sought inequality. We can interpret it as the
continuity of the identity map

id : (V, ∥ · ∥1) → (V, ∥ · ∥L∞), p 7→ p,

where V is the (infinite dimensional) vector space of polynomials (with real coefficients in
one variable), and ∥p∥1 := ∑N

j=0 |pj|, where N = N(p) is the degree of p.
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4.5.3. For all x ∈ [0, 1] and u ∈ C1([0, 1]) with u(0) = 0, we have

|u(x)| = |u(x) − u(0)︸ ︷︷ ︸
=0

| =
∣∣∣∣∣
ˆ x

0
u′(t) dt

∣∣∣∣∣ ≤︸︷︷︸
△

ˆ x

0
|u′(t)| dt ≤

ˆ 1

0
|u′(t)| dt,

so taking the maximum over x we find the sought estimate. If we define

X := {u ∈ C1([0, 1]) : with u(0) = 0}, ∥u∥X := ∥u′∥L1(0,1),

then the inequality is expressing the continuity of the embedding X ↪→ C0([0, 1]). The
fact that X is an honest vector space is readily checked, while the fact that ∥ · ∥X is a
norm follows from the linearity of the derivative and

∥u∥X = 0 =⇒ u′ = 0 a.e. =⇒ u′ ≡ 0 (u′ is continuous)
=⇒ u ≡ const =⇒ u ≡ 0 (since u(0) = 0).
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