D-MATH	Analysis IV	ETH Zürich
Marco Badran	Problem set 5	FS 2024

The exercises below are listed by increasing difficulty, starting from warm-up questions that serve to get acquainted with the topics, up to exam-like questions. Questions marked with (*) can be challenging and are more difficult than the average exam question. You are encouraged to try and solve them by working in groups if necessary.

The question marked with <u>BONUS</u> is a multiple-choice question that can contribute to extra points in the final exam; refer to the webpage for more information.

Recall that if $f \in L^1((-\pi, \pi), \mathbb{C})$ and $k \in \mathbb{Z}$ then the k^{th} Fourier coefficient is the complex number defined by

$$c_k(f) := \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} dx.$$

5.1. Closed answer questions.

1. Let $V \subset H$ be a closed subspace, $u \in H$, $\tilde{u} \in V$ and assume

$$\langle u - \tilde{u}, v \rangle = 0 \text{ for all } v \in D,$$
 (1)

where $D \subset V$ is dense. Is it true that $\tilde{u} = P_V(u)$?

2. Is the inclusion map

 $\iota \colon (L^{\infty}(0,1), \|\cdot\|_{L^{1}(0,1)}) \to (L^{\infty}(0,1), \|\cdot\|_{L^{2}(0,1)}), \quad u \mapsto u,$

bounded?

- 3. Let p(X, Y) be a polynomial in two variables and let $f(x) := p(\cos(x), \sin(x))$. If it true that $c_k(f) \neq 0$ only for finitely many values of k (i.e., is f a trigonometric polynomial)? **Hint**: Recall the identity $2\cos(x) = e^{ix} + e^{-ix}$, and use it to express $\cos(x)^m$. Similarly for $\sin(x)$.
- 4. Compute the Fourier series of $f(x) = e^{-|x|}$ and $g(x) = \sin(x/3)$ (they are not particularly nice, but try to get the computation right!).

5.2. Representation of functionals. (<u>BONUS</u>) For each of the following linear functionals φ defined on an Hilbert space H, determine if it is a continuous linear functional on H and, if so, recall that by Riesz representation theorem $\varphi(x) = \langle x, x_0 \rangle_H$ for some $x_0 \in H$. Determine x_0 for every continuous linear functional.

Remark: you get the bonus point if you detect correctly which functionals are not linear continuous and which are, and for the latter give the correct form of x_0 .¹

- 1. $H = L^2([-\pi, \pi])$ and $\varphi(f) = c_1(f)$
- 2. $H = L^2([-1, 1])$ and $\varphi(f) = f(0)$
- 3. $H = \ell^2(\mathbb{N}, \mathbb{R})$ and $\varphi((x_k)_k) = x_3 + 2x_7$

¹Careful with the constants!

- 4. $H = L^2([-1, 1])$ and $\varphi(f) = \int_{-1}^1 (1+f)^2$ 5. $H = L^2(\mathbb{R})$ and $\varphi(f) = \frac{1}{3} \int_{-1}^1 f$
- 6. $H = \ell^2(\mathbb{N}, \mathbb{R})$ and $\varphi((x_k)_k) = \sum_{k=1}^{\infty} \frac{x_k}{k^2}$

5.3. Legendre polynomials III.

- 1. Using the Stone-Weierstrass Theorem, prove that polynomial functions are dense in $L^2(-1, 1)$.
- 2. Recall the Legendre polynomials $P_k(x) := D^k((x^2 1)^k)$. Show that $\operatorname{span}\{P_k\}_{k \in \mathbb{N}} = \operatorname{span}\{x^k\}_{k \in \mathbb{N}}$, so by the previous point Legendre polynomials have dense span. Hence, combining this with exercise 2.4, they form a complete orthogonal system. **Hint**: One inclusion is easy, for the other one show inductively on N that

$$x^N \in \operatorname{span}\{P_0, P_1, \dots, P_N\}.$$

In order to do so, notice that $P_k(x) = \frac{(2k)!}{k!}x^k + \{\text{lower order terms}\},\ \text{so the leading-order coefficient on } P_N \text{ is nonzero.}$

5.4. Fourier series of x^m .

- 1. Show that $c_k(1) = \sin(\pi k)/(\pi k)$ for all $k \in \mathbb{Z} \setminus \{0\}$. Notice that the identity holds also for all $k \in \mathbb{R}$ (including k = 0!).
- 2. Consider $k \mapsto c_k(f)$ as a function of $k \in \mathbb{R}$, for a fixed function $f \in L^1(-\pi, \pi)$. Show the identity $c_k(xf) = i \frac{d}{dk} c_k(f)$.
- 3. (*) Compute for each $m \in \mathbb{N}$ the Fourier series of x^m . Hint: Use the first two points and the analytic expansion $\sin(z) = \sum_{\ell=0}^{\infty} \frac{(-1)^{\ell} z^{2\ell+1}}{(2\ell+1)!}$. Recall that the N^{th} derivative of a function is N! times the N^{th} coefficient of its analytic expansion.