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The exercises below are listed by increasing difficulty, starting from warm-up questions
that serve to get acquainted with the topics, up to exam-like questions. Questions marked
with (∗) can be challenging and are more difficult than the average exam question. You
are encouraged to try and solve them by working in groups if necessary.

The question marked with BONUS is a multiple-choice question that can contribute to
extra points in the final exam; refer to the webpage for more information.

Recall that if f ∈ L1((−π, π),C) and k ∈ Z then the kth Fourier coefficient is the complex
number defined by

ck(f) := 1
2π

ˆ π

−π

f(x)e−ikx dx.

5.1. Closed answer questions.

1. Let V ⊂ H be a closed subspace, u ∈ H, ũ ∈ V and assume

⟨u − ũ, v⟩ = 0 for all v ∈ D, (1)

where D ⊂ V is dense. Is it true that ũ = PV (u)?

2. Is the inclusion map

ι : (L∞(0, 1), ∥ · ∥L1(0,1)) → (L∞(0, 1), ∥ · ∥L2(0,1)), u 7→ u,

bounded?

3. Let p(X, Y ) be a polynomial in two variables and let f(x) := p(cos(x), sin(x)). If
it true that ck(f) ̸= 0 only for finitely many values of k (i.e., is f a trigonometric
polynomial)? Hint: Recall the identity 2 cos(x) = eix + e−ix, and use it to express
cos(x)m. Similarly for sin(x).

4. Compute the Fourier series of f(x) = e−|x| and g(x) = sin(x/3) (they are not
particularly nice, but try to get the computation right!).

5.2. Representation of functionals. (BONUS) For each of the following linear
functionals φ defined on an Hilbert space H, determine if it is a continuous linear
functional on H and, if so, recall that by Riesz representation theorem φ(x) = ⟨x, x0⟩H

for some x0 ∈ H. Determine x0 for every continuous linear functional.

Remark: you get the bonus point if you detect correctly which functionals are not linear
continuous and which are, and for the latter give the correct form of x0.1

1. H = L2([−π, π]) and φ(f) = c1(f)

2. H = L2([−1, 1]) and φ(f) = f(0)

3. H = ℓ2(N,R) and φ((xk)k) = x3 + 2x7

1Careful with the constants!
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4. H = L2([−1, 1]) and φ(f) =
´ 1

−1(1 + f)2

5. H = L2(R) and φ(f) = 1
3

´ 1
−1 f

6. H = ℓ2(N,R) and φ((xk)k) = ∑∞
k=1

xk

k2

5.3. Legendre polynomials III.

1. Using the Stone-Weierstrass Theorem, prove that polynomial functions are dense in
L2(−1, 1).

2. Recall the Legendre polynomials Pk(x) := Dk((x2 − 1)k). Show that span{Pk}k∈N =
span{xk}k∈N, so - by the previous point - Legendre polynomials have dense span.
Hence, combining this with exercise 2.4, they form a complete orthogonal system.
Hint: One inclusion is easy, for the other one show inductively on N that

xN ∈ span{P0, P1, . . . , PN}.

In order to do so, notice that Pk(x) = (2k)!
k! xk + {lower order terms}, so the leading-

order coefficient on PN is nonzero.

5.4. Fourier series of xm.

1. Show that ck(1) = sin(πk)/(πk) for all k ∈ Z \ {0}. Notice that the identity holds
also for all k ∈ R (including k = 0!).

2. Consider k 7→ ck(f) as a function of k ∈ R, for a fixed function f ∈ L1(−π, π). Show
the identity ck(xf) = i d

dk
ck(f).

3. (∗) Compute for each m ∈ N the Fourier series of xm. Hint: Use the first two points
and the analytic expansion sin(z) = ∑∞

ℓ=0
(−1)ℓz2ℓ+1

(2ℓ+1)! . Recall that the N th derivative
of a function is N ! times the N th coefficient of its analytic expansion.
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5. Solutions

Solution of 5.1:

5.1.1. The answer is yes. It suffices to check the weak condition of the orthogonal
projection operator

⟨u − ũ, v⟩ = 0 ∀v ∈ V.

By density of D, for any v ∈ V there exists a sequence (vn)n∈N ⊆ D that converges to v.
From the assumption and the continuity of the inner product we find

⟨u − ũ, v⟩ = lim
n→∞

⟨u − ũ, vn⟩ = 0.

5.1.2. The answer is no. Define the following sequence of functions

fn := n · 1(0,1/n) ∀n ≥ 1.

The first five functions are plotted in the graph below
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We then have ∥fn∥L1(0,1) = 1 but ∥fn∥L2(0,1) =
√

n. This example shows that the operator
norm of the inclusion mapping is unbounded. Hence, the inclusion map is not bounded.

5.1.3. The answer is yes. Note that the Fourier coefficient functional is linear, so it
suffices to consider a single monomial. Then for any indices n, m ≥ 0 we employ the
binomial theorem to compute

cos(x)n sin(x)m =
(

eix + e−ix

2

)n (
−i · eix − e−ix

2

)m

= (−i)m

2n+m

n∑
k=0

((
n
k

)
eikxe−i(n−k)x

)
m∑

j=0

((
m
j

)
(−1)m−jeijxe−i(m−j)x

)

= (−i)m

2n+m

n∑
k=0

m∑
j=0

(
n
k

)(
m
j

)
(−1)m−jei(2k+2j−n−m)x.

assignment: March 27, 2024 due: April 9, 2024 3/6



d-math
Marco Badran

Analysis IV
Problem set 5

ETH Zürich
FS 2024

This shows that p(cos(x), sin(x)) can be expressed as a trigonometric polynomial. As the
kth-Fourier coefficient is merely a scaled inner product between f and eikx, we see that
ck(f) will be equal to zero for all but finite many k ∈ Z.

5.1.4. First, we compute the Fourier coefficients of f .

ck(f) = 1
2π

ˆ π

−π

e−|x|e−ikx dx

= 1
2π

ˆ 0

−π

exe−ikx dx + 1
2π

ˆ π

0
e−xe−ikx dx

= 1
2π

ˆ 0

−π

e(1−ik)x dx + 1
2π

ˆ π

0
e−(1+ki)x dx

= 1
2π

[
e(1−ik)x

1 − ik

]∣∣∣∣∣
0

−π

+ 1
2π

[
−e−(1+ki)x

1 + ki

]∣∣∣∣∣
π

0

= 1
2π

· 1 − e−(1−ik)π

1 − ik
− 1

2π
· e−(1+ki)π − 1

1 + ki

= 1 − e−π(−1k)
2π

· 2
k2 + 1

Next compute the Fourier coefficients of g. First observe that

sin(x/3) = −i · eix/3 − e−ix/3

2 .

Also note that

ck(g) = 1
2π

ˆ π

−π

g(x)e−ikx dx = 1
2π

ˆ π

−π

g(x)eikx dx = c−k(g).

Now compute

ck(eix/3) = 1
2π

ˆ π

−π

eix/3e−ikx dx

= 1
2π

ˆ π

−π

e(1/3−k)ix dx

= 1
2π

[
−e(1/3−k)ix

1/3 − k
· i

]∣∣∣∣∣
π

−π

= (−1)k
√

3
2π(1/3 − k) .
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Then use the fact that the kth-Fourier coefficient is linear and the above identity to get

ck(g) = ck(sin(x/3))

= −i · ck

(
eix/3 − e−ix/3

2

)

= − i

2ck(eix/3) + i

2ck(e−ix/3)

= − i

2ck(eix/3) + i

2ck( eix/3 )

= − i

2ck(eix/3) + i

2c−k(eix/3)

= −i · (−1)k
√

3
4π(1/3 − k) + i · (−1)k

√
3

4π(1/3 + k)

= i · 9k
√

3
2π(9k2 − 1)(−1)k+1.

The resulting Fourier series has the following shape

Solution of 5.2: Of course, proving that the given functional can be represented as
the pairing ⟨·, x0⟩ for some x0 ∈ H automatically proves linearity and continuity (by
Cauchy–Schwarz).

1. This is a continuous linear functional since by definition it’s given by the L2 pairing
with x0 = 1

2π
eix.

2. This functional is not even well defined in L2, as L2 functions are defined up to sets
of measure zero.

3. This is a continuous linear functional given by the ℓ2 pairing with x0 = e3 + 2e7,
where {ek}∞

k=1 is the standard basis of ℓ2(N).

4. This functional is not linear, since φ(0) ̸= 0.

5. This is a continuous linear functional given by the L2 pairing with x0 = 1
3χ[−1,1]

6. This is a continuous linear functional given by the ℓ2 pairing with x0 := (1/k2)k∈N ∈ ℓ2

Solution of 5.3: 5.2.1. We use the real version of Stone-Weierstrass, as given in the
appendix. Polynomials of one variable are clearly an algebra in C([−1, 1]) which contains
constants. Furthermore, if a ̸= b ∈ [−1, 1] then P (X) = X − a vanish at X = a and does
not vanish at X = b, so it separates points. We conclude that every continuous function
can be approximated by polynomials uniformly in [−1, 1], hence also in quadratic mean
(L2).

By density of continuous Cc(−1, 1) in L2(−1, 1) with respect to the L2 topology, we
conclude that polynomials are dense in L2(−1, 1).
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5.2.2. Following the hint we prove by induction that

xN ∈ span{P0(x), P1(x), . . . , PN(x)}, for all N ∈ N.

The base case is easy since 1 = P0 by definition. For the inductive step, we notice that
(2N + 2)!
(N + 1)! xN+1 = PN+1(x) − Q≤N(x), (2)

where Q≤N is a polynomials of degree at most N , so by inductive assumption

Q≤N(x) ∈ span{1, x, . . . , xN} ⊂ span{P0, P1(x), . . . , PN(x)},

hence (2) gives xN ∈ span{P0, P1(x), . . . , PN+1(x)}.

Since we checked that {Pk} is an orthonormal system in Problem set 2, and now we
proved that it has dense span, we have that it is a complete orthogonal system.

Solution of 5.4: 5.3.1. Assume k ∈ R \ {0} and compute

ck(1) =
 π

−π

e−ikx dx = 1
−2iπk

[e−ikx]π−π = eiπk − e−iπk

2iπk
= sin(πk)

πk
,

where we used 2i sin(z) = eiz − e−iz. We remark that sin(z)/z is analytic in the whole
complex plane, so the formula makes perfect sense for k = 0 at which the value is 1 (which
is the correct one).

5.3.2. This is a direct computation
d

dk
ck(f) = d

dk

 π

−π

f(x)e−ikx dx =
 π

−π

f(x) d

dk
(e−ikx)

= −ik

 π

−π

f(x)e−ikx dx = −ikck(f),

we can interchange integral and derivative since for each fixed k ∈ R we have

sup
k′∈[k−1,k+1]

|∂k′e−ik′x| ∈ L1
x(−π, π).

5.3.3. Iterating the previous identity and the analytic expansion of sin(z)/z we find for
all k ∈ R that

ck(xm) = im( d

dk

)m
ck(1) = im( d

dk

)m sin(πk)
πk

= (πi)m
( d

dt

)m sin t

t

= (πi)m
m∑

j=0

(
m

j

)
Dj(sin t)Dm−j(1/t),

where t = πk. Now we evaluate at an integer k and find

ck(xm) = (iπ)m
∑

j=0,j odd

(
m

j

)
(−1)j(−1)(−2) . . . (−m + j)(πk)−m+j−1

= (iπ)m
∑

j=0,j odd
m!j!(πk)−m+j−1,

which is, admittedly, not very explicit.
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