The exercises below are listed by increasing difficulty, starting from warm-up questions that serve to get acquainted with the topics, up to exam-like questions. Questions marked with (*) can be challenging and are more difficult than the average exam question. You are encouraged to try and solve them by working in groups if necessary.

The question marked with <u>BONUS</u> is a multiple-choice question that can contribute to extra points in the final exam; refer to the webpage for more information.

6.1. Closed answer / quick questions.

- 1. Let $(H, \langle \cdot, \cdot \rangle)$ be an Hilbert space and $V \subset H$ a proper dense subspace. Can $(V, \langle \cdot, \cdot \rangle)$ be an Hilbert space, at least in some examples?
- 2. Is the space of sequences with only finitely many nonzero terms, dense in $\ell^2(\mathbb{N})$?
- 3. Find the Fourier coefficients of $\sin^3(x)$ (compute no integrals!). Hint: write $\sin x = \frac{1}{2i}(e^{ix} e^{-ix})$ and expand the cube.
- 4. If $f_n \to f$ in $L^1([-\pi,\pi];\mathbb{C})$ then $c_k(f_n) \to c_k(f)$ as $n \to \infty$, uniformly in k? Hint: try estimating $|c_k(f_n) - c_k(f)|$ with $||f_n - f||_{L^1}$, uniformly in k.

6.2. Fourier coefficients of a shifted function. (<u>BONUS</u>) Let $f : \mathbb{R} \to \mathbb{C}$ be a 2π -periodic function such that $f \in L^1((-\pi,\pi),\mathbb{C})$ and let $\tau \in \mathbb{R}$. Define $f_{\tau}(t) := f(t-\tau)$. Determine the Fourier coefficients of $f_{\tau}|_{(-\pi,\pi)}$ as a function of the Fourier coefficients of $f|_{(-\pi,\pi)}$.

6.3. Fourier series in $(0, \pi)$. We want to show that every function in $L^2([0, \pi]; \mathbb{R})$ can be expressed as a real Fourier series of sines.

- 1. Show that if $f \in L^2([-\pi,\pi];\mathbb{C})$ is odd then $c_k(f)$ are purely imaginary and $c_0 = 0$;
- 2. Show that if $f \in L^2([-\pi,\pi];\mathbb{R})$ is odd then its Fourier series simplifies to

$$S_N f(x) = \sum_{1 \le k \le N} \underbrace{2ic_k(f)}_{\in \mathbb{R}} \sin(kx)$$

3. Given $g \in L^2([0,\pi];\mathbb{R})$ show that $\tilde{S}_N g \to g$ in L^2 where

$$\tilde{S}_N g(x) := \sum_{1 \le k \le N} \tilde{a}_k(g) \sin(kx), \qquad \tilde{a}_k(g) := \frac{2}{\pi} \int_0^{\pi} g(x) \sin(kx) \, dx \in \mathbb{R}.$$

4. Conclude that $\{\sqrt{2/\pi}\sin(kx)\}_{k\geq 1}$ in an Hilbert basis for $L^2([0,\pi];\mathbb{R})$.

6.4. Uniqueness of coefficients in L^1 . Fix $f \in L^1([-\pi, \pi]; \mathbb{C})$, and let $c_k = c_k(f)$ be its Fourier coefficients, we want to show that if $c_k(f) = 0$ for all $k \in \mathbb{Z}$, then $f \equiv 0$ a.e..

1. Show that if actually $f \in L^2([-\pi,\pi];\mathbb{C})$, then the statement follows directly from a Theorem seen in class.

- 2. Show that if $\int_{-\pi}^{\pi} f\phi = 0$ for all $\phi \in L^{\infty}((-\pi,\pi);\mathbb{C})$, then we must have f = 0 a.e. Hint: try what happens setting $\phi := \bar{f}/(1+|f|^2)$.
- 3. Show that if $\int_{-\pi}^{\pi} f\phi = 0$ for all $\phi \in C_c((-\pi,\pi);\mathbb{C})$, then we must have f = 0 a.e. **Hint**: we would like to set again $\phi = \overline{f}/(1+|f|^2)$, but f is not continuous... nevertheless $C_c(-\pi,\pi)$ is dense in $L^1(-\pi,\pi)$.
- 4. Using and appropriate density result seen in class, show that if $c_k(f) = 0$ for all k, then indeed $\int_{-\pi}^{\pi} f\phi = 0$ for all $\phi \in C_c((-\pi, \pi); \mathbb{C})$. Hence by the previous steps f = 0.

6.5. Coefficients summability implies convergence. Let $f \in L^1([-\pi, \pi]; \mathbb{C})$, and let $c_k = c_k(f)$ be its Fourier coefficients.

- 1. Show that if $\sum_{k \in \mathbb{Z}} |c_k|^2 < \infty$, then in fact $f \in L^2([-\pi, \pi]; \mathbb{C})$. Hint: use Parseval's identity to show that S_N is Cauchy in L^2 , then use the prevulous exercise.
- 2. Show that if $\sum_{k \in \mathbb{Z}} |c_k| < \infty$, then in fact $f \in C_{per}([-\pi, \pi]; \mathbb{C})^1$. **Hint**: show that S_N is Cauchy in the uniform norm, then use the prevuious exercise.

¹This is a slight abuse of terminology. More precisely: there exist a (necessarily unique) continuous and periodic \tilde{f} such that $\tilde{f} = f$ a.e.