The exercises below are listed by increasing difficulty, starting from warm-up questions that serve to get acquainted with the topics, up to exam-like questions. Questions marked with (*) can be challenging and are more difficult than the average exam question. You are encouraged to try and solve them by working in groups if necessary.

The question marked with <u>BONUS</u> is a multiple-choice question that can contribute to extra points in the final exam; refer to the webpage for more information.

6.1. Closed answer / quick questions.

- 1. Let $(H, \langle \cdot, \cdot \rangle)$ be an Hilbert space and $V \subset H$ a proper dense subspace. Can $(V, \langle \cdot, \cdot \rangle)$ be an Hilbert space, at least in some examples?
- 2. Is the space of sequences with only finitely many nonzero terms, dense in $\ell^2(\mathbb{N})$?
- 3. Find the Fourier coefficients of $\sin^3(x)$ (compute no integrals!). Hint: write $\sin x = \frac{1}{2i}(e^{ix} e^{-ix})$ and expand the cube.
- 4. If $f_n \to f$ in $L^1([-\pi,\pi];\mathbb{C})$ then $c_k(f_n) \to c_k(f)$ as $n \to \infty$, uniformly in k? Hint: try estimating $|c_k(f_n) - c_k(f)|$ with $||f_n - f||_{L^1}$, uniformly in k.

6.2. Fourier coefficients of a shifted function. (<u>BONUS</u>) Let $f : \mathbb{R} \to \mathbb{C}$ be a 2π -periodic function such that $f \in L^1((-\pi,\pi),\mathbb{C})$ and let $\tau \in \mathbb{R}$. Define $f_{\tau}(t) := f(t-\tau)$. Determine the Fourier coefficients of $f_{\tau}|_{(-\pi,\pi)}$ as a function of the Fourier coefficients of $f|_{(-\pi,\pi)}$.

6.3. Fourier series in $(0, \pi)$. We want to show that every function in $L^2([0, \pi]; \mathbb{R})$ can be expressed as a real Fourier series of sines.

- 1. Show that if $f \in L^2([-\pi,\pi];\mathbb{C})$ is odd then $c_k(f)$ are purely imaginary and $c_0 = 0$;
- 2. Show that if $f \in L^2([-\pi,\pi];\mathbb{R})$ is odd then its Fourier series simplifies to

$$S_N f(x) = \sum_{1 \le k \le N} \underbrace{2ic_k(f)}_{\in \mathbb{R}} \sin(kx)$$

3. Given $g \in L^2([0,\pi];\mathbb{R})$ show that $\tilde{S}_N g \to g$ in L^2 where

$$\tilde{S}_N g(x) := \sum_{1 \le k \le N} \tilde{a}_k(g) \sin(kx), \qquad \tilde{a}_k(g) := \frac{2}{\pi} \int_0^\pi g(x) \sin(kx) \, dx \in \mathbb{R}.$$

4. Conclude that $\{\sqrt{2/\pi}\sin(kx)\}_{k\geq 1}$ in an Hilbert basis for $L^2([0,\pi];\mathbb{R})$.

6.4. Uniqueness of coefficients in L^1 . Fix $f \in L^1([-\pi, \pi]; \mathbb{C})$, and let $c_k = c_k(f)$ be its Fourier coefficients, we want to show that if $c_k(f) = 0$ for all $k \in \mathbb{Z}$, then $f \equiv 0$ a.e..

1. Show that if actually $f \in L^2([-\pi,\pi];\mathbb{C})$, then the statement follows directly from a Theorem seen in class.

- 2. Show that if $\int_{-\pi}^{\pi} f\phi = 0$ for all $\phi \in L^{\infty}((-\pi,\pi);\mathbb{C})$, then we must have f = 0 a.e. Hint: try what happens setting $\phi := \bar{f}/(1+|f|^2)$.
- 3. Show that if $\int_{-\pi}^{\pi} f\phi = 0$ for all $\phi \in C_c((-\pi,\pi);\mathbb{C})$, then we must have f = 0 a.e. **Hint**: we would like to set again $\phi = \overline{f}/(1+|f|^2)$, but f is not continuous... nevertheless $C_c(-\pi,\pi)$ is dense in $L^1(-\pi,\pi)$.
- 4. Using and appropriate density result seen in class, show that if $c_k(f) = 0$ for all k, then indeed $\int_{-\pi}^{\pi} f\phi = 0$ for all $\phi \in C_c((-\pi, \pi); \mathbb{C})$. Hence by the previous steps f = 0.

6.5. Coefficients summability implies convergence. Let $f \in L^1([-\pi, \pi]; \mathbb{C})$, and let $c_k = c_k(f)$ be its Fourier coefficients.

- 1. Show that if $\sum_{k \in \mathbb{Z}} |c_k|^2 < \infty$, then in fact $f \in L^2([-\pi, \pi]; \mathbb{C})$. Hint: use Parseval's identity to show that S_N is Cauchy in L^2 , then use the prevulous exercise.
- 2. Show that if $\sum_{k \in \mathbb{Z}} |c_k| < \infty$, then in fact $f \in C_{per}([-\pi, \pi]; \mathbb{C})^1$. **Hint**: show that S_N is Cauchy in the uniform norm, then use the prevuious exercise.

¹This is a slight abuse of terminology. More precisely: there exist a (necessarily unique) continuous and periodic \tilde{f} such that $\tilde{f} = f$ a.e.

6. Solutions

Solution of 6.1:

- 1. No V cannot be complete. Pick any $x \in H \setminus V$ and, by density, a sequence $\{v_k\} \subset V$ such that $v_k \to x$ in H. Since converging sequences are Cauchy, we find that if V was Hilbert (complete) the limit point (which is x by uniqueness) should lie in V, but this is impossible by construction.
- 2. Yes, it is. Given any $f \in \ell^2(\mathbb{N})$ consider the truncated sequence $\{f_N\} \subset \ell^2(\mathbb{N})$ defined by

$$f_N(k) = \begin{cases} f(k) & k \le N \\ 0 & k > N. \end{cases}$$

By definition

$$||f - f_N||_{\ell^2}^2 = \sum_{k>N} |f(k)|^2 \to 0 \text{ as } N \to \infty$$

since it is the tail of a convergent sum.

3. Expanding the cube one finds that

$$(\sin x)^3 = \frac{i}{8} \left(e^{3ix} - 3e^{ix} + 3e^{-ix} - e^{-3ix} \right)$$

so the only nonzero Fourier coefficients are

$$c_{\pm 3}(\sin^3) = \frac{\pm i}{8}, \quad c_{\pm 1}(\sin^3) = \frac{\mp 3i}{8}.$$

(We are using that Fourier coefficients are unique!)

4. Yes, this is true. We estimate

$$|c_k(f) - c_k(f_n)| = |c_k(f - f_n)| \le ||e^{-ikx}||_{L^{\infty}(-\pi,\pi)} ||f - f_n||_{L^1(-\pi,\pi)} \le ||f - f_n||_{L^1(-\pi,\pi)}.$$

And the right hand side is uniform in k and infinitesimal as $n \to \infty$.

Solution of 6.2: Using that both f and $e^{ik(\cdot)}$ are 2π -periodic, we find

$$c_k(f_{\tau}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f_{\tau}(x) e^{-ikx} dx$$

= $\frac{1}{2\pi} \int_{-\pi}^{\pi} f(x-\tau) e^{-ikx} dx$
[$x' = x - \tau$] = $\frac{1}{2\pi} \int_{-\pi-\tau}^{\pi-\tau} f(x') e^{-ik(x'+\tau)} dx'$
= $\frac{e^{-ik\tau}}{2\pi} \int_{-\pi}^{\pi} f(x') e^{-ikx'} dx'$
= $e^{-ik\tau} c_k(f)$

Solution of 6.3: 1. Let $f \in L^2([-\pi,\pi];\mathbb{C})$ be odd. Given $k \in \mathbb{Z}$ compute

$$c_k(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} dx$$

= $\frac{1}{2\pi} \int_{0}^{\pi} f(x) e^{-ikx} dx + \frac{1}{2\pi} \int_{-\pi}^{0} f(x) e^{-ikx} dx$
= $\frac{1}{2\pi} \int_{0}^{\pi} f(x) e^{-ikx} dx + \frac{1}{2\pi} \int_{0}^{\pi} f(-x) e^{ikx} dx$
= $\frac{1}{2\pi} \int_{0}^{\pi} f(x) (e^{-ikx} - e^{ikx}) dx$
= $\frac{-i}{\pi} \int_{0}^{\pi} f(x) \sin(kx) dx$,

where we used the change of variables $x \mapsto -x$. Since $(f \sin) \in \mathbb{R}$, we conclude $c_k(f) \in i\mathbb{R}$. Furthermore, we see that $c_0(f) = 0$.

2. Note that for $k \in \mathbb{Z}$ we have

$$c_{-k}(f) = = \frac{-i}{\pi} \int_0^{\pi} f(x) \sin(-kx) dx$$
$$= \frac{i}{\pi} \int_0^{\pi} f(x) \sin(kx) dx$$
$$= -c_k(f).$$

Writing $e^{i\vartheta} = \cos(\vartheta) + i\sin(\vartheta)$, we obtain

$$S_N(f) = \sum_{k=1}^{N} [c_k(f)\cos(kx) + ic_k(f)\sin(kx)] + \sum_{k=1}^{N} [c_{-k}(f)\cos(-kx) + ic_{-k}(f)\sin(-kx)] = \sum_{k=1}^{N} [c_k(f)\cos(kx) + ic_k(f)\sin(kx)] + \sum_{k=1}^{N} [-c_k(f)\cos(kx) + ic_k(f)\sin(kx)] = \sum_{k=1}^{N} 2ic_k(f)\sin(kx),$$

where we used that $\sin(\cdot)$ is odd and $\cos(\cdot)$ is even.

3. Let $f: [-\pi, \pi] \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} g(x), & \text{if } x \in [0, \pi] \\ -g(-x), & \text{if } x \in [-\pi, 0). \end{cases}$$

Then $f \in L^2([-\pi,\pi];\mathbb{R})$ is odd and we may use (1.) and (2.) to compute the N-th partial sum of the Fourier series

$$S_N f(x) = \sum_{k=1}^N \tilde{a}_k(g) \sin(kx),$$

for a.e. $x \in [-\pi, \pi]$. Applying Corollary 2.7 we conclude the convergence

$$\begin{split} \left\| \tilde{S}_N g - g \right\|_{L^2(0,\pi)} &= \| S_N f - f \|_{L^2(0,\pi)} \\ &\leq \| S_N f - f \|_{L^2(-\pi,\pi)} \to 0, \end{split}$$

as $N \to \infty$.

4. In 3. we saw that $\operatorname{Span}\left\{\sqrt{2/\pi}\sin(kx)\right\}_{k\geq 1}$ is dense in $L^2([0,\pi];\mathbb{R})$. It remains to show L^2 -orthonormality. Recall the identity

$$\sin(x)\sin(y) = \frac{1}{2}(\cos(x-y) - \cos(x+y)).$$

For $k \neq j \geq 1$ compute

$$\begin{split} \left\langle \sqrt{2/\pi} \sin(kx), \sqrt{2/\pi} \sin(jx) \right\rangle_{L^2} &= \frac{2}{\pi} \int_0^\pi \sin(kx) \sin(jx) \, dx \\ &= \frac{1}{\pi} \int_0^\pi \cos((k-j)x) - \cos((k+j)x) \, dx \\ &= \frac{1}{\pi} \left(\left[\frac{1}{k-j} \sin((k-j)x) \right]_0^\pi + \left[\frac{1}{k+j} \sin((k+j)x) \right]_0^\pi \right) \\ &= 0. \end{split}$$

Furthermore,

$$\left\|\sqrt{2/\pi}\sin(kx)\right\|_{L^{2}}^{2} = \frac{2}{\pi}\int_{0}^{\pi}\sin(kx)^{2} dx$$
$$= \frac{1}{\pi}\int_{0}^{\pi}1 - \cos(2kx) dx$$
$$= \frac{1}{\pi}\left(\pi - \left[\frac{1}{2k}\sin(2kx)\right]_{0}^{\pi}\right)$$
$$= 1.$$

Solution of 6.4:

1. We can use Parseval's Identity and get that f has zero norm:

$$||f||_{L^2}^2 = 2\pi \cdot \sum_k |c_k(f)|^2 = 0.$$

This shows that f has to be equal to 0 almost everywhere.

2. Using $\phi = \frac{\bar{f}}{1+|f|^2}$, which is bounded by construction, we get

$$0 = \int_{-\pi}^{\pi} f\phi = \int_{-\pi}^{\pi} f \cdot \frac{\bar{f}}{1+|f|^2} = \int_{-\pi}^{\pi} \frac{|f|^2}{1+|f|^2},$$

since the integrand is nonnegative, we must have f = 0 almost everywhere.

3. As in the Solution of Problem 3.1.2, we use mollifiers ρ_{ε} and note that $\rho_{\varepsilon} * f \to f$ in $L^1((-\pi, \pi); \mathbb{C})$. Thus there exists a sequence ε_j such that $(\rho_{\varepsilon_j} * f)(x) \to f(x)$ for a.e. $x \in (-\pi, \pi)$. But for any such x:

$$f(x) = \lim_{j \to \infty} \left(\rho_{\varepsilon_j} * f \right)(x) = \lim_{j \to \infty} \int_{-\pi}^{\pi} \rho_{\varepsilon_j}(x - y) f(y) \, \mathrm{d}y = 0,$$

since $\rho_{\varepsilon_j}(x-\cdot) \in C^1_c((-\pi,\pi);\mathbb{C})$ for ε_j small enough.

Alterantively, pick a sequence $\{f_n\} \subset C_c(-\pi,\pi)$ such that $f_n \to f$ in a.e.. Then test the inequality with $\phi_n := \overline{f_n}/(1+|f_n|^2)$: by the dominated convergence theorem we find, as in the previous point,

$$0 = \lim_{n} \int_{-\pi}^{\pi} \frac{f\bar{f}_n}{1+|f_n|^2} = \int_{-\pi}^{\pi} \frac{|f|^2}{1+|f|^2}.$$

4. Let $\phi \in C_c^1((-\pi, \pi); \mathbb{C})$. Since ϕ is compactly supported, we can extend it periodically to all of \mathbb{R} and view it as a continuous 2π -periodic function. By the Stone-Weierstrass Theorem, there exist a sequence of trigonometric polynomials that converge to ϕ in the $L^{\infty}(-\pi, \pi)$ norm.

Let now $\varepsilon > 0$ and choose some trigonometric polynomial $p = \sum_{|k| \le N} p_k e^{ikx}$ such that $||\phi - p||_{\infty} < \varepsilon$.

Then we can estimate:

$$\left| \int_{-\pi}^{\pi} f\phi \, \mathrm{d}x \right| \leq \left| \int_{-\pi}^{\pi} f \cdot p \, \mathrm{d}x \right| + \left| \int_{-\pi}^{\pi} f \cdot (\phi - p) \, \mathrm{d}x \right|$$
$$\leq \sum_{|k| \leq N} |p_k c_k(f)| + \varepsilon ||f||_1 = \varepsilon ||f||_1$$

Since $\varepsilon > 0$ was arbitrary, it follows that $\int_{-\pi}^{\pi} f \phi \, dx = 0$

Solution of 6.5: (1.) Let M > N and observe that

$$||S_M - S_N||_{L^2} = \sum_{N \le |k| \le M} |c_k|^2 \to 0$$

as $N, M \to \infty$, since it's the tail of a convergent series. Here we used that the Fourier coefficients of $S_M - S_N \in L^2$ are trivially given by c_k for $N \leq |k| \leq M$ and 0 otherwise, along with Parseval's identity. Thus, S_N has an L^2 limit \tilde{f} and $c_k(f) = c_k(\tilde{f})$ for every k.

D-MATH	Analysis IV	ETH Zürich
Marco Badran	Problem set 6	FS 2024

By the first point of the previous exercise, since $c_k(f - \tilde{f}) = 0$ for every k it holds $f = \tilde{f}$ as L^1 functions.

(2.) The solution is similar to the previous point, with the only difference that now we check that $\{S_N\}$ is Cauchy in the uniform norm.

$$\|S_M - S_N\|_{\infty} \le \sum_{N \le |k| \le M} |c_k| \to 0$$

as $N,M\to\infty,$ since it's again the tail of a convergent series. The conclusion follows as before.