D-MATH	Analysis IV	ETH Zürich
Marco Badran	Problem set 9	FS 2024

The exercises below are listed by increasing difficulty, starting from warm-up questions that serve to get acquainted with the topics, up to exam-like questions. Questions marked with (*) can be challenging and are more difficult than the average exam question. You are encouraged to try and solve them by working in groups if necessary.

The question marked with <u>BONUS</u> is a multiple-choice question that can contribute to extra points in the final exam; refer to the webpage for more information.

9.1. Closed answer questions.

- 1. If g_k are continuous and compactly supported functions in \mathbb{R}^d such that $g_k \to g$ uniformly, is it true that g is necessarily continuous? Vanishes as $|x| \to \infty$? Has compact support?
- 2. Let $\phi \in L^1(\mathbb{R}^d)$ and consider $\phi_t(x) := \phi(x) \mathbf{1}_{\{|\phi(x)| \ge t\}}$, for t > 0. Is it true that

$$\sup_{\xi \in \mathbb{R}^d} |\mathcal{F}(\phi_t)(\xi)| \to 0 \text{ as } t \to \infty?$$

Hint: $\|\phi_t\|_{L^1} \to 0$ as $t \to \infty$... (why?).

- 3. Compute the Fourier transform of the indicator function of the interval $\mathbf{1}_{[-1,1]}(x)$, for $x \in \mathbb{R}$.
- 4. Given $f \in L^1(\mathbb{R}^d)$ define f * f and explain why (f * f)(0) is not necessarily a well-defined number (an example suffices).

9.2. Properties of the Fourier transform. (<u>BONUS</u>) Determine which of the following statements is true. Select all that apply.

- 1. If $f \in L^1(\mathbb{R}^d)$, then $\hat{f} \in L^1(\mathbb{R}^d)$.
- 2. If f is compactly supported, then $\hat{f} \in L^1(\mathbb{R}^d)$.
- 3. If $\hat{f}(\xi_1, \xi_2) = \frac{\sin(\xi_2)}{1+i\xi_1^2}$ then $f \in L^1(\mathbb{R}^2)$.
- 4. If f is compactly supported and bounded, then $\hat{f} \in \mathcal{C}_0(\mathbb{R}^d)^1$.

9.3. Heat equation for rough initial data. You are given $f \in L^2(-\pi, \pi)$, and consider the associated heat equation solution defined by

$$u(t,x) := \sum_{k \in \mathbb{Z}} c_k(f) e^{ikx - k^2 t}, \text{ for all } x \in \mathbb{R}, t > 0.$$

1. Show that $u \in C^{\infty}((0, \infty) \times \mathbb{R})$ and solves the heat equation

$$\partial_t u(t,x) = \partial_{xx} u(t,x), \quad \text{for all } x \in \mathbb{R}, t > 0.$$
 (1)

Hint: Start from Parseval's inequality and argue as in the heat equation proof.

¹That is, continuous functions which vanish at infinity

2. Show that u assumes the initial datum f in the following L^2 sense

$$\lim_{t \downarrow 0} \|u(t, \cdot) - f\|_{L^2(-\pi, \pi)} = 0.$$
(2)

3. Consider a function v(t, x) defined in $(0, \infty) \times \mathbb{R}$ which is of class C^2 in space and 2π -periodic, and of class C^1 in time. If v satisfies equations (1) and (2), then v = u.

9.4. The wave equation.

Consider the evolution problem with periodic boundary conditions:

1	$\partial_{tt}u - \partial_{xx}u = \lambda u$	for all $(t, x) \in \mathbb{R} \times \mathbb{R}$, where $\lambda \leq 0$ is a given constant,
J	$u(t,x) = u(t,x+2\pi)$	for all $(t, x) \in \mathbb{R} \times \mathbb{R}$,
	u(0,x) = f(x)	for some given $f \in C^{\infty}(\mathbb{R}), 2\pi$ -periodic,
	$\partial_t u(0,x) = g(x)$	for some given $g \in C^{\infty}(\mathbb{R}), 2\pi$ -periodic.

- 1. Write the most general formal solution $u(t, x) = \sum_{k \in \mathbb{Z}} u_k(t) e^{ikx}$, where the $\{u_k(t)\}$ depend on λ and the Fourier coefficients of f and g. Hint: Recall that λ has a sign, you will get the equation for an harmonic oscillator.
- 2. Show that the formal solution is in fact a true solution and is C^{∞} in both variables.
- 3. Show that, if we just want our solution u to be $C^2(\mathbb{R} \times \mathbb{R})$, the assumptions on f and g can be relaxed to:

$$\sum_{k \in \mathbb{Z}} |k|^2 |c_k(f)| + |k| |c_k(g)| < +\infty.$$

- 4. Assume that $\lambda = 0$. Show that for each pair $\phi, \psi \in C_{per}^2$ the function $(x, t) \mapsto \phi(x-t) + \psi(x+t)$ solves the wave equation, explain why this is compatible with what you found in the previous points.
- 5. (\star) Does the wave equation have the "smoothing effect" for positive times?