This is the material you are expected to learn for both the oral and the written examination. As you can see it is a subset of what has been done in class and many proofs have been left out. Please be aware that also in the written examination you might be asked to provide a statement/proof/definition.

1. HILBERT SPACES

- Inner product spaces
 - Vector space: Definition.
 - Inner product space: Definition and properties.
 - Subspace is an inner product space: Statement.
 - Examples of inner product spaces: $L^2(X, \mu, \mathbb{R}), L^2(X, \mu, \mathbb{C}), \ell^2_{\mathbb{C}}$, and $\mathcal{C}([0, 1]).$
 - Norm: Definition.
 - Not every norm is induced by an inner product: Counterexample.
 - Cauchy-Schwarz inequality: Statement and **proof**.
 - Parallelogram law: Statement.
 - Polarization identities: Statements.
 - Inner product through the polarization identities.
 - Ptolemy's inequality: Statement.
 - Inner product continuity: Statement and proof. Continuity is not directly deducible from the one of both factors. Continuity is also a consequence of the polarization formulas.
 - Linear maps are isometries if and only if they preserve the inner product structure: Statement and **proof**.
- Normed vector spaces
 - Inner product spaces are normed vector spaces: Statement.
 - Examples of finite-dimensional vector spaces: \mathbb{K}^d with *p*-norms $(1 \le p < \infty)$ and the maximum norm $(p = \infty)$.
 - Examples of infinite-dimensional vector spaces: C([0, 1]) with *p*-norms $(1 \le p < \infty)$ and the uniform norm $(p = \infty)$.
 - L^p -spaces as measure spaces are complete normed vector spaces: Statement and **proof**.
 - Open ball: Definition.
 - Convexity: Definition.
 - Open balls are convex in a normed vector space: Statement and **proof**.
 - Interior points, open/closed sets, topology, topological vector space: Definitions.
 - Continuity of + and \cdot in a topological vector space: Result from the triangle inequality and homogeneity. Statement.
 - Convergence of a sequence: Definitions in the topological sense and in the metric space sense.
 - Completeness of a metric space, Cauchy sequence: Definitions.
 - Convergent sequences are Cauchy: Statement and proof.
 - Limit points: Definition.
 - Closed sets: A set is closed if and only if it contains all of its limit points. Statement.

- Dense subsets: Definitions.
- Equivalent norms: Definition.
- In finite dimension, all norms are equivalent: Statement and **proof**.
- In finite dimension, different norms induce the same topology: Statement.
- Relation between the maximum norm and the 1- and 2-norms in \mathbb{K}^d : Statement and **proof**.
- In infinite dimension, different norms do not necessarily induce the same topology: Counterexample.
- Hilbert spaces
 - Hilbert spaces can be viewed as a generalization of Euclideans spaces to infinite-dimensional settings: Statement.
 - Canonical norm and distance through an inner product: Definitions.
 - Hilbert space: Definitions.
 - Characterization by the validity of the parallelogram law: Statement.
 - Examples: \mathbb{C}^d , $L^2(X, \mu, \mathbb{C})$, $\ell^2_{\mathbb{C}}$ with their canonical scalar products, finite-dimensional inner product spaces.
 - Subspace is a Hilbert space if and only if it is closed. Proper dense subspaces are not Hilbert spaces: Statements and **proofs**.
 - Inner product spaces are not necessarily complete: Counterexample.
 - Orthogonality: Definition. Relation between orthogonality and the norm in an inner product space.
 - Projection operator, Gram-Schmidt orthogonalization process and orthonormal basis: Definitions.
- Basis of a Hilbert space
 - Algebraic basis and finite-dimensional vector spaces: Definitions.
 - Separability: Definition.
 - Examples of separable topological spaces: \mathbb{R}^d , \mathbb{C}^d , compact metric spaces, $\mathcal{C}(K)$, L^p -spaces.
 - Orthonormal system: Definition. Bessel inequality and Parseval's identity: Statements.
 - Hilbert basis: Definition.
 - Equivalence of Hilbert and algebraic bases in finite dimensions, distinction in infinite dimensions.
 - Completeness criterion: Statement and proof.
 - Existence of a basis: Statement.
 - Separable complex Hilbert spaces are isometric to $\ell^2_{\mathbb{C}}$: Statement and **proof**.
- Closest point property, projections
 - Projections on closed vector subspaces and closed convex sets: Statements and proofs.
 - Orthogonal space is not trivial: Statement and proof. Importance of the closedness hypothesis.
 - Projection over finite-dimensional and separable closed subspaces: Statements and **proofs**.
 - Orthogonal complement: Definition. Closedness, non-triviality of the orthogonal complement and trivial intersection with the linear space: Statements and **proofs**.
 - Orthogonal decomposition: Statement and proof.
- Linear operators and continuous functionals
 - Linear, bounded and unbounded operators, functionals, L(X, Y) and continuous dual space: Definitions.

 $\mathbf{2}$

- Example of unbounded operator: the derivative operator.
- Operator norm: Definition. Equivalent formulations of the norm: Statement.
- Equivalence between boundedness and continuity: Statement.
- Riesz Representation Theorem: Statement and **proof**.
- Isomorphism between a Hilbert space and its dual: Statement.

2. Fourier Series

- Definitions and main properties
 - Fourier coefficient: Definition. Well-posedness in L^1 and L^2 : Statement and **proof**. Fourier coefficients are bounded linear functionals on L^2 : Statement.
 - Fourier partial sums: Definition.
 - Fourier Basis Theorem: Statement.
 - Convergence of the Fourier partial sums in L^2 , Parseval's identity and its inner product version in L^2 : Statement.
 - Expressions of Fourier coefficients and partial sums using sine and cosine, and simplifications based on function parities: Statements and proofs.
 - Examples: Fourier coefficients of trigonometric functions and trigonometric polynomials.
 - Examples: Computation of series through Parseval's identity.
 - Equivalence between real-valuedness of the function and conjugation symmetry of the Fourier coefficients: Statement.
- Series in Banach spaces
 - Convergence criteria of series in Hilbert spaces and Pythagoras' Theorem: Statements.
 - Completeness and convergence in $\mathcal{C}_b^m(\Omega; \mathbb{C})$: Statement and **proof**.
- Regularity and asymptotic behavior of Fourier coefficients
 - Fourier coefficients of the derivative: Statement and **proof**. Generalization to \mathcal{C}^h functions: Statement.
 - Asymptotic behavior of Fourier coefficients in \mathcal{C}^1 : Statement and **proof**. Generalization to \mathcal{C}^h functions: Statement.
 - Uniform convergence of the Fourier partial sum of C^1 functions: Statement and **proof**. Generalization to C^h functions: Statement.
 - Summability of Fourier coefficients implies regularity of the function and uniform convergence of the Fourier partial sums along the derivatives: Statement.
- Pointwise convergence of Fourier series
 - Locality of the pointwise convergence of the Fourier partial sum: Statement and proof.
 - Integral of the Dirichlet Kernel: Statement and proof. Explicit formula: Statement.
 - Riemann-Lebesgue Lemma: Statement and proof.
- Overview of convergence (tables)
 - Relation between the modes of convergence
 - Nested classes of functions
 - Size of the Fourier coefficients and convergence of the Fourier partial sums
- Heat equation
 - Uniqueness of solution: Statement.
 - Non-existence in the past: Statement and **proof**.

3. Fourier Transform

- Fourier transform in $L^1(\mathbb{R}^d)$
 - Fourier transform: Definition. Well-posedness in L^1 and properties: Statements and **proofs**.
 - Translation, modulation, dilatation, convolution formulas: Statements and **proofs**.
 - Examples: Exponential envelope function $e^{-|x|}$ and characteristic function $\mathbf{1}_{[-1,1]}$: Statements and **proofs**. Normal Gaussian distribution Φ_d : Statement.
 - Fourier transform of a radial function is radial: Statement and **proof**.
 - Parity and valuedness of the Fourier transform: Statements and **proofs**.
- Space of Schwartz functions
 - Fourier transform of partial derivatives: Statement and $\mathbf{proof.}$
 - Derivative of the Fourier transform: Statement and **proof**.
 - Fourier transform of the normal Gaussian distribution through an initial value problem: Statement and **proof**.
 - Example: Fourier transform of $xe^{-|x|}$: Statement and **proof**.
 - Schwartz space: Definition. Inclusion in L^p -spaces and growth rate of Schwartz functions: Statements.
 - Closedness under partial derivation and multiplication by polynomials: Statement.
 - Strict inclusion of smooth, compactly supported functions in the Schwartz space: Statement and counterexample for equality.
 - Semi-norm and norm on Schwartz space: Statement and **proof**.
 - Schwartz functions have smooth Fourier transforms, Fourier transform of the derivatives and derivatives of the Fourier transform: Statements.
 - Schwartz functions have Schwartz Fourier transforms: Statement.
 - Inversion formula in $\mathcal{S}(\mathbb{R}^d)$ and relaxation to L^1 : Statements.
 - Shift formula: Statement.
 - Injectivity of the Fourier transform: Statement.
 - Examples: u * u = u implies u = 0 almost everywhere, Fourier transforms of $\frac{1}{1+x^2}, \frac{1}{(1+x^2)^2}$ and $\frac{\sin(2x)}{1+x^2}$, and equation $u * u(x) = \frac{2}{1+x^2}$.
- Fourier transform in $L^2(\mathbb{R}^d)$
 - The Fourier transform is an isometry on L^2 : Statement.
 - Fourier transform in L^2 : Definition. Well-posedness: Statement.
 - Plancherel's identity: Statement and **proof**.
 - Fourier transform of partial derivatives: Statement.
- Overview of results & properties (tables)
 - Fourier transform of Schwartz class functions
 - Correspondence between operations in $\mathcal{S}(\mathbb{R}^d)$
 - Important Fourier transforms

4. Spectral theory

- Compact operators
 - Definition of compact operator. Characterization of compact operators.
 - Definition of finite rank operators and compactness.
 - The space of compact operators is a closed subspace of the space of linear operators
 - Example: integral operators.

4

- Definition of adjoint operator. Theorem of existence and uniqueness of the adjoint operator.
- Proposition: an operator is compact if and only if its adjoint is compactFredholm theory and spectral theorem
 - Definition: eigenvalue and eigenvectors
 - Theorems: Fredholm alternative I, II, III and IV (Statements and **proof** of Fredholm Alternative III).
 - Definition of resolvent and spectrum
 - Open mapping theorem and Banach fixed point theorem
 - Theorem: structure theorem of the spectrum of compact operators
 - Spectral theorem