
EXAM SYLLABUS

This is the material you are expected to learn for both the oral and the written
examination. As you can see it is a subset of what has been done in class and many
proofs have been left out. Please be aware that also in the written examination you
might be asked to provide a statement/proof/definition.

1. Hilbert Spaces

• Inner product spaces
– Vector space: Definition.
– Inner product space: Definition and properties.
– Subspace is an inner product space: Statement.
– Examples of inner product spaces: L2(X,µ,R), L2(X,µ,C), ℓ2C, and

C([0, 1]).
– Norm: Definition.
– Not every norm is induced by an inner product: Counterexample.
– Cauchy-Schwarz inequality: Statement and proof.
– Parallelogram law: Statement.
– Polarization identities: Statements.
– Inner product through the polarization identities.
– Ptolemy’s inequality: Statement.
– Inner product continuity: Statement and proof. Continuity is not

directly deducible from the one of both factors. Continuity is also a
consequence of the polarization formulas.

– Linear maps are isometries if and only if they preserve the inner prod-
uct structure: Statement and proof.

• Normed vector spaces
– Inner product spaces are normed vector spaces: Statement.
– Examples of finite-dimensional vector spaces: Kd with p-norms (1 ≤

p < ∞) and the maximum norm (p = ∞).
– Examples of infinite-dimensional vector spaces: C([0, 1]) with p-norms

(1 ≤ p < ∞) and the uniform norm (p = ∞).
– Lp-spaces as measure spaces are complete normed vector spaces: State-

ment and proof.
– Open ball: Definition.
– Convexity: Definition.
– Open balls are convex in a normed vector space: Statement and proof.
– Interior points, open/closed sets, topology, topological vector space:

Definitions.
– Continuity of + and · in a topological vector space: Result from the

triangle inequality and homogeneity. Statement.
– Convergence of a sequence: Definitions in the topological sense and in

the metric space sense.
– Completeness of a metric space, Cauchy sequence: Definitions.
– Convergent sequences are Cauchy: Statement and proof.
– Limit points: Definition.
– Closed sets: A set is closed if and only if it contains all of its limit

points. Statement.
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– Dense subsets: Definitions.
– Equivalent norms: Definition.
– In finite dimension, all norms are equivalent: Statement and proof.
– In finite dimension, different norms induce the same topology: State-

ment.
– Relation between the maximum norm and the 1- and 2-norms in Kd:

Statement and proof.
– In infinite dimension, different norms do not necessarily induce the

same topology: Counterexample.
• Hilbert spaces

– Hilbert spaces can be viewed as a generalization of Euclideans spaces
to infinite-dimensional settings: Statement.

– Canonical norm and distance through an inner product: Definitions.
– Hilbert space: Definitions.
– Characterization by the validity of the parallelogram law: Statement.
– Examples: Cd, L2(X,µ,C), ℓ2C with their canonical scalar products,

finite-dimensional inner product spaces.
– Subspace is a Hilbert space if and only if it is closed. Proper dense

subspaces are not Hilbert spaces: Statements and proofs.
– Inner product spaces are not necessarily complete: Counterexample.
– Orthogonality: Definition. Relation between orthogonality and the

norm in an inner product space.
– Projection operator, Gram-Schmidt orthogonalization process and or-

thonormal basis: Definitions.
• Basis of a Hilbert space

– Algebraic basis and finite-dimensional vector spaces: Definitions.
– Separability: Definition.
– Examples of separable topological spaces: Rd, Cd, compact metric

spaces, C(K), Lp-spaces.
– Orthonormal system: Definition. Bessel inequality and Parseval’s

identity: Statements.
– Hilbert basis: Definition.
– Equivalence of Hilbert and algebraic bases in finite dimensions, dis-

tinction in infinite dimensions.
– Completeness criterion: Statement and proof.
– Existence of a basis: Statement.
– Separable complex Hilbert spaces are isometric to ℓ2C: Statement and

proof.
• Closest point property, projections

– Projections on closed vector subspaces and closed convex sets: State-
ments and proofs.

– Orthogonal space is not trivial: Statement and proof. Importance of
the closedness hypothesis.

– Projection over finite-dimensional and separable closed subspaces: State-
ments and proofs.

– Orthogonal complement: Definition. Closedness, non-triviality of the
orthogonal complement and trivial intersection with the linear space:
Statements and proofs.

– Orthogonal decomposition: Statement and proof.
• Linear operators and continuous functionals

– Linear, bounded and unbounded operators, functionals, L(X,Y ) and
continuous dual space: Definitions.
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– Example of unbounded operator: the derivative operator.
– Operator norm: Definition. Equivalent formulations of the norm:

Statement.
– Equivalence between boundedness and continuity: Statement.
– Riesz Representation Theorem: Statement and proof.
– Isomorphism between a Hilbert space and its dual: Statement.

2. Fourier Series

• Definitions and main properties
– Fourier coefficient: Definition. Well-posedness in L1 and L2: State-

ment and proof. Fourier coefficients are bounded linear functionals
on L2: Statement.

– Fourier partial sums: Definition.
– Fourier Basis Theorem: Statement.
– Convergence of the Fourier partial sums in L2, Parseval’s identity and

its inner product version in L2: Statement.
– Expressions of Fourier coefficients and partial sums using sine and

cosine, and simplifications based on function parities: Statements and
proofs.

– Examples: Fourier coefficients of trigonometric functions and trigono-
metric polynomials.

– Examples: Computation of series through Parseval’s identity.
– Equivalence between real-valuedness of the function and conjugation

symmetry of the Fourier coefficients: Statement.
• Series in Banach spaces

– Convergence criteria of series in Hilbert spaces and Pythagoras’ The-
orem: Statements.

– Completeness and convergence in Cm
b (Ω;C): Statement and proof.

• Regularity and asymptotic behavior of Fourier coefficients
– Fourier coefficients of the derivative: Statement and proof. General-

ization to Ch functions: Statement.
– Asymptotic behavior of Fourier coefficients in C1: Statement and proof.

Generalization to Ch functions: Statement.
– Uniform convergence of the Fourier partial sum of C1 functions: State-

ment and proof. Generalization to Ch functions: Statement.
– Summability of Fourier coefficients implies regularity of the function

and uniform convergence of the Fourier partial sums along the deriva-
tives: Statement.

• Pointwise convergence of Fourier series
– Locality of the pointwise convergence of the Fourier partial sum: State-

ment and proof.
– Integral of the Dirichlet Kernel: Statement and proof. Explicit for-

mula: Statement.
– Riemann-Lebesgue Lemma: Statement and proof.

• Overview of convergence (tables)
– Relation between the modes of convergence
– Nested classes of functions
– Size of the Fourier coefficients and convergence of the Fourier partial

sums
• Heat equation

– Uniqueness of solution: Statement.
– Non-existence in the past: Statement and proof.
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3. Fourier Transform

• Fourier transform in L1(Rd)
– Fourier transform: Definition. Well-posedness in L1 and properties:

Statements and proofs.
– Translation, modulation, dilatation, convolution formulas: Statements

and proofs.
– Examples: Exponential envelope function e−|x| and characteristic func-

tion 1[−1,1]: Statements and proofs. Normal Gaussian distribution
Φd: Statement.

– Fourier transform of a radial function is radial: Statement and proof.
– Parity and valuedness of the Fourier transform: Statements and proofs.

• Space of Schwartz functions
– Fourier transform of partial derivatives: Statement and proof.
– Derivative of the Fourier transform: Statement and proof.
– Fourier transform of the normal Gaussian distribution through an ini-

tial value problem: Statement and proof.
– Example: Fourier transform of xe−|x|: Statement and proof.
– Schwartz space: Definition. Inclusion in Lp-spaces and growth rate of

Schwartz functions: Statements.
– Closedness under partial derivation and multiplication by polynomials:

Statement.
– Strict inclusion of smooth, compactly supported functions in the Schwartz

space: Statement and counterexample for equality.
– Semi-norm and norm on Schwartz space: Statement and proof.
– Schwartz functions have smooth Fourier transforms, Fourier transform

of the derivatives and derivatives of the Fourier transform: Statements.
– Schwartz functions have Schwartz Fourier transforms: Statement.
– Inversion formula in S(Rd) and relaxation to L1: Statements.
– Shift formula: Statement.
– Injectivity of the Fourier transform: Statement.
– Examples: u ∗ u = u implies u = 0 almost everywhere, Fourier trans-

forms of 1
1+x2 ,

1
(1+x2)2 and sin(2x)

1+x2 , and equation u ∗ u(x) = 2
1+x2 .

• Fourier transform in L2(Rd)
– The Fourier transform is an isometry on L2: Statement.
– Fourier transform in L2: Definition. Well-posedness: Statement.
– Plancherel’s identity: Statement and proof.
– Fourier transform of partial derivatives: Statement.

• Overview of results & properties (tables)
– Fourier transform of Schwartz class functions
– Correspondence between operations in S(Rd)
– Important Fourier transforms

4. Spectral theory

• Compact operators
– Definition of compact operator. Characterization of compact opera-

tors.
– Definition of finite rank operators and compactness.
– The space of compact operators is a closed subspace of the space of

linear operators
– Example: integral operators.
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– Definition of adjoint operator. Theorem of existence and uniqueness
of the adjoint operator.

– Proposition: an operator is compact if and only if its adjoint is compact
• Fredholm theory and spectral theorem

– Definition: eigenvalue and eigenvectors
– Theorems: Fredholm alternative I, II, III and IV (Statements and

proof of Fredholm Alternative III).
– Definition of resolvent and spectrum
– Open mapping theorem and Banach fixed point theorem
– Theorem: structure theorem of the spectrum of compact operators
– Spectral theorem


