1. Goal and Motivation

The goal of this lecture is use the Spectral Theorem for compact operators to prove the following

Theorem 1.1. Let $V \in C^{\infty}(\mathbb{R})$ be a nonnegative smooth function and $I=(0,1)$. There exist

- an sequence $\left\{\varepsilon_{k}\right\}_{k \in \mathbb{N}} \subset \mathbb{R}_{+}$such that $\varepsilon_{k} \rightarrow+\infty$,
- a sequence $\psi_{k} \in C^{\infty}(I) \cap C(\bar{I})$ such that

$$
\begin{align*}
& -\psi_{k}^{\prime \prime}(x)+V(x) \psi_{k}(x)=\varepsilon_{k} \psi_{k}(x) \text { for all } x \in I, \quad \psi_{k}(0)=\psi_{k}(1)=0, \tag{1}\\
& \text { and }\left\{\psi_{k}\right\}_{k \in \mathbb{N}} \text { is an Hilbert basis of } L^{2}(I) .
\end{align*}
$$

Remark 1.2. In the case $V \equiv 0$ we can solve explicitly (1) and find

$$
\varepsilon_{k}=\pi^{2}(k+1)^{2} \quad \text { and } \quad \psi_{k}(x)=\frac{1}{\sqrt{\pi}} \sin (\pi(k+1) x) .
$$

By Fourier theory, $\left\{\frac{1}{\sqrt{\pi}} \sin (\pi(k+1) x)\right\}_{k \in \mathbb{N}}$ is an Hilbert basis of $L^{2}(I)$.
Theorem 1.1 is a far reaching generalisation of this example as, for a general V, there is no hope to give formulas for the ψ_{k} 's.

Before starting the proof let us show a typical application of Theorem 1.1.
Example 1.3. Consider the Schrödinger equation

$$
i \partial_{t} w=H w, \quad H:=-\frac{d^{2}}{d x^{2}}+V(x), \quad w(t, 0)=w(t, 1)=0, \quad w(0, x)=f(x)
$$

where $w(t, x): \mathbb{R} \times \bar{I} \rightarrow \mathbb{C}$ and $f \in L^{2}(I)^{1}$. By Theorem 1.1 there is an orthonormal basis $\left\{\psi_{k}\right\}$ such that $H \psi_{k}=\varepsilon_{k} \psi_{k}$, for some "energies" ε_{k}. If we express then the initial state $f(x)=\sum_{k}\left\langle f, \psi_{k}\right\rangle \psi_{k}(x)$ we find that the solution w must be given by

$$
w(t, x)=\sum_{k}\left\langle f, \psi_{k}\right\rangle e^{-i \varepsilon_{k} t} \psi_{k}(x),
$$

where the series converges at least in the L^{2} sense (and much better if f is assumed to be more regular).

Notice that if $f=\psi_{N}$, then $w(t, x)=e^{-i \varepsilon_{N} t} \psi_{N}(x)$, and in particular $|w|$ is constant, this is why the ψ_{k} 's are called steady states.

2. Proof of Theorem 1.1

2.1. The Spectral Theorem. As anticipated, the proof of Theorem 1.1 relies on

Theorem 2.1 (Spectral Theorem). Let \mathcal{H} be an Hilbert space and let $T \in \mathcal{L}(\mathcal{H})$ be compact and symmetric. Then there is a real infinitesimal sequence $\left\{\lambda_{k}\right\}_{k \in \mathbb{N}}$ and an Hilbert basis $\left\{e_{k}\right\}_{k} \in \mathbb{N}$ of \mathcal{H} such that

$$
T v=\sum_{k} \lambda_{k}\left\langle v, e_{k}\right\rangle e_{k} \quad \text { for all } v \in \mathcal{H}
$$

Proof. See the Lecture Notes.

[^0]2.2. An auxiliary Hilbert space. Define the scalar product
\[

$$
\begin{equation*}
\langle u, v\rangle_{V}:=\int_{0}^{1} u^{\prime}(x) v^{\prime}(x)+V(x) u(x) v(x) d x, \quad u, v \in C_{c}^{1}(I) \tag{2}
\end{equation*}
$$

\]

Notice that for all $0 \leq x<y \leq 1$ and $u \in C_{c}^{1}$ it holds

$$
|u(x)-u(y)|=\left|\int_{x}^{y} u^{\prime}(s) d s\right| \leq \int_{x}^{y}\left|u^{\prime}\right| \leq\left\|u^{\prime}\right\|_{L^{2}(I)}|x-y|^{\frac{1}{2}} \leq\|u\|_{V}|x-y|^{\frac{1}{2}} .
$$

So in particular

$$
\begin{equation*}
\|u\|_{L^{\infty}(I)}+\sup _{x, y \in I} \frac{|u(x)-u(y)|}{|x-y|^{\frac{1}{2}}} \leq 2\|u\|_{V} . \tag{3}
\end{equation*}
$$

We also define the Hilbert space ($\mathcal{H},\langle u, v\rangle_{V}$) where

$$
\mathcal{H}:={\overline{C_{c}^{1}(I)}}^{\|\cdot\|_{V}} .
$$

Thanks to (3), we have $\mathcal{H} \subset C^{\frac{1}{2}}(\bar{I})$ and, concretely, $u \in \mathcal{H}$ if and only if there is a sequence $\left\{u_{j}\right\} \subset C_{c}^{1}(I)$ such that

$$
\left\{u_{j}\right\} \text { is Cauchy with respect to }\|\cdot\|_{V} \text { and } u_{j} \rightarrow u \text { in } L^{2}(I) .
$$

The key observation is the following
Proposition 2.2. The inclusion $\mathcal{H} \subset L^{2}(I)$ is compact: if $\left\{w_{j}\right\} \subset \mathcal{H}$ is bounded, then a subsequence converges strongly in $C(\bar{I})$ and thus in $L^{2}(I)$.
Proof. For each $j \in \mathbb{N}$, by definition, we can write $w_{j}=\tilde{w}_{j}+\xi_{j}$ with

$$
\tilde{w}_{j} \in C_{c}^{1}(I) \text { and }\left\|\xi_{j}\right\|_{V} \leq 2^{-j}
$$

If $M:=\sup _{j}\left\|w_{j}\right\|_{V}$ then $\left\|\tilde{w}_{j}\right\|_{V} \leq M+1$ and so by (3) we have

$$
\left\|\tilde{w}_{j}\right\|_{L^{\infty}(I)}+\sup _{x, y \in I} \frac{\left|\tilde{w}_{j}(x)-\tilde{w}_{j}(y)\right|}{|x-y|^{\frac{1}{2}}} \leq 2 M+2
$$

Thus the family of continuous functions $\left\{\tilde{w}_{j}\right\} \subset C(\bar{I})$ is equibounded and equicontinuous, so - by Ascoli-Arzelá - has a subsequence $\tilde{w}_{j^{\prime}} \rightarrow \bar{w}$ uniformly in $C(\bar{I})$. By (3), we also have $\xi_{j^{\prime}} \rightarrow 0$ uniformly, so in conclusion $w_{j^{\prime}} \rightarrow \bar{w}$ in $C(\bar{I})$.

We conclude remarking that every $u \in \mathcal{H}$ must vanish at the endpoints if I.
Exercise 2.3. By approximation, show that $\sin (\pi k x) \in \mathcal{H}$ for all $k \in \mathbb{N}$. More generally, show that if $v \in C^{1}(I) \cap C(\bar{I})$ with $\int_{I} \dot{v}^{2}<\infty$ and $v(0)=v(1)=0$, then $v \in \mathcal{H}$.
2.3. Weak formulation of (1). Given $f \in L^{2}(I)$, we say that $u \in \mathcal{H}$ solves (1) weakly if

$$
\begin{equation*}
\langle u, w\rangle_{V}=\langle f, w\rangle_{L^{2}} \quad \text { for all } w \in \mathcal{H} \tag{4}
\end{equation*}
$$

Let us motivate this definition, assume for a second that u, f are smooth and

$$
-u^{\prime \prime}+V u=f .
$$

If we multiply both sides of the equation by $w \in C_{c}^{1}(I)$ and integrate over I we find

$$
-\int_{I} u^{\prime \prime} w+V u w=\int_{I} f w .
$$

Now we can integrate by parts the first integral (the boundary term vanish!) and find

$$
\langle u, w\rangle_{V}=\int_{I} u^{\prime} w^{\prime}+V u w=\int_{I} f w=\langle f, w\rangle_{L^{2}} .
$$

The following proposition will be crucial to "go back" from the weak formulation (4) to the classical one (1).

Proposition 2.4. Let $f \in L^{2}(I)$ and $u \in \mathcal{H}$ satisfying (4). Then

$$
k^{2} c_{k}(u)=c_{k}(f-V u) \text { for all } k \in \mathbb{N}
$$

Proof. Fix $k \in \mathbb{N}$. By the Exercise above $w:=\frac{1}{\sqrt{\pi}} \sin (k \pi x) \in \mathcal{H}$. Write $u=\tilde{u}_{j}+\xi_{j}$ with $\left\|\xi_{j}\right\|_{V} \leq 2^{-j}$. Then we have

$$
\begin{aligned}
c_{k}(f) & =\langle f, w\rangle_{L^{2}(I)}=\langle u, w\rangle_{V}=\left\langle\tilde{u}_{j}, w\right\rangle_{V}+\left\langle\xi_{j}, w\right\rangle_{V} \\
& =\int_{I} \tilde{u}_{j}^{\prime} w^{\prime}+\int_{I} V \tilde{u}_{j} w+\left\langle\xi_{j}, w\right\rangle_{V} \\
& =k^{2} \int_{I} \tilde{u}_{j} w+\int_{I} V \tilde{u}_{j} w+\left\langle\xi_{j}, w\right\rangle_{V}
\end{aligned}
$$

Passing to the limit as $j \rightarrow \infty$ we find

$$
c_{k}(f)=k^{2} c_{k}(u)+c_{k}(V u) .
$$

2.4. Existence if weak solutions and the operator \boldsymbol{T}. We start solving (4).

Lemma 2.5. Given $f \in L^{2}(I)$ there exists a unique $u \in \mathcal{H}$ such that (4) holds.
Proof. The linear functional

$$
F: \mathcal{H} \rightarrow \mathbb{R}, \quad F(w):=\langle f, w\rangle_{L^{2}(I)},
$$

is bounded in \mathcal{H} since for all $w \in \mathcal{H}$ it holds

$$
|F(w)| \leq\|f\|_{L^{2}(I)}\|w\|_{L^{2}(I)} \leq 2\|f\|_{L^{2}(I)}\|w\|_{V} .
$$

Thus, by Riesz' representation Theorem in \mathcal{H}, there is a unique $u \in \mathcal{H}$ such that

$$
\langle u, w\rangle_{V}=\langle f, w\rangle_{L^{2}(I)} \text { for all } w \in \mathcal{H}
$$

This means exactly that there is a unique solution u to (4).
This Lemma defines a bounded linear operator $\tilde{T}: L^{2}(I) \rightarrow \mathcal{H}$ as

$$
\tilde{T}: L^{2}(I) \ni f \mapsto u \in \mathcal{H} \text { which solves (4) for } f
$$

Then we define the compact operator $T: L^{2}(I) \rightarrow L^{2}(I)$ as the composition

$$
T: L^{2}(I) \xrightarrow{\tilde{T}} \mathcal{H} \hookrightarrow L^{2}(I) .
$$

This operator is compact because of Proposition 2.2.
Let us check that T is symmetric:

$$
\langle f, T g\rangle_{L^{2}(I)}=\langle T f, T g\rangle_{V}=\langle T g, T f\rangle_{V}=\langle g, T f\rangle_{L^{2}(I)}
$$

2.5. Conclusion of the proof. Since T is compact and symmetric on $L^{2}(I)$, the Spectral Theorem 2.1 applies: there is a sequence of eigenvalues $\lambda_{j} \rightarrow 0$ and a complete orthonormal system of eigenfunctions $\psi_{j} \in L^{2}(I)$ such that

$$
\lambda_{j}\left\langle\psi_{j}, w\right\rangle_{V}=\left\langle\psi_{j}, w\right\rangle_{L^{2}(I)}, \text { for all } w \in \mathcal{H}, j \in \mathbb{N} .
$$

Notice that $\operatorname{ran}(T) \subset \mathcal{H}$, so we have $\psi_{j} \in \mathcal{H}$. Taking $w=\psi_{j}$ we also find that $\lambda_{j}>0$ for all $j \in \mathbb{N}$.

In order to conclude the proof of Theorem 1.1 we must prove that each ψ_{j} is in fact C^{∞} in I. This is done by the so called "bootstrap" procedure, applying repeatedly Proposition 2.4.

First we have $\psi_{j}-V \psi_{j} \in L^{2}(I)$, so

$$
\left\{k^{2} c_{k}\left(\psi_{j}\right)\right\}_{k} \in \ell^{2}(\mathbb{N})
$$

This immediately gives $\psi_{j} \in C^{1}(I)$ and $\psi_{j}^{\prime} \in L^{2}(I)$, so $\psi_{j}^{\prime}-\left(V \psi_{j}\right)^{\prime} \in L^{2}(I)$. Then we find

$$
\left\{k^{2} c_{k}\left(\psi_{j}-V \psi_{j}\right)\right\}_{k} \in \ell^{2}(\mathbb{N})
$$

Again Proposition 2.4 gives

$$
\left\{k^{4} c_{k}\left(\psi_{j}\right)\right\}_{k} \in \ell^{2}(\mathbb{N})
$$

which in turn implies $\psi_{j} \in C^{2}(I)$ and $\psi_{j}^{\prime \prime} \in L^{2}(I)$. Thus $\psi_{j}^{\prime \prime}-\left(V \psi_{j}\right)^{\prime \prime} \in L^{2}(I)$ and we find

$$
\left\{k^{4} c_{k}\left(\psi_{j}-V \psi_{j}\right)\right\}_{k} \in \ell^{2}(\mathbb{N}) .
$$

and so

$$
\left\{k^{6} c_{k}\left(\psi_{j}\right)\right\}_{k} \in \ell^{2}(\mathbb{N})
$$

It is clear that this procedure never stops and shows

$$
k^{M} c_{k}\left(\psi_{j}\right) \in \ell^{2}(\mathbb{N}) \text { for all } M \geq 1
$$

so $\psi_{j} \in C^{\infty}(I)$. Finally, by Proposition 2.4 we find

$$
c_{k}\left(-\lambda_{j} \psi_{j}^{\prime \prime}+V \psi_{j}-\psi_{j}\right)=0 \text { for all } k \in \mathbb{N},
$$

and the only possibility is that each ψ_{j} solves

$$
\lambda_{j} \psi_{j}^{\prime \prime}(x)+V(x) \psi_{j}(x)=\psi_{j}(x) \quad \text { for all } x \in I
$$

Theorem 1.1 follows setting $\varepsilon_{j}:=1 / \lambda_{j}$.
ETH, Rämistrasse 101, 8092 Zürich, Switzerland
Email address: federico.franceschini@math.ethz.ch
$U R L$: https://sites.google.com/view/federico-franceschini

[^0]: ${ }^{1}$ In Quantum Mechanics, $|w(t, x)|^{2} d x$ represents the probability of finding at time t in the interval $[x, x+d x]$ a quantum particle, prepared at time $t=0$ in the state $f(x)$, subject to the Hamiltonian H and confined to live in a box $x \in I$.

