
1. Goal and Motivation

The goal of this lecture is use the Spectral Theorem for compact operators to
prove the following

Theorem 1.1. Let V ∈ C∞(R) be a nonnegative smooth function and I = (0, 1).
There exist

• an sequence {εk}k∈N ⊂ R+ such that εk → +∞,
• a sequence ψk ∈ C∞(I) ∩ C(I) such that

(1) −ψ′′
k (x) + V (x)ψk(x) = εkψk(x) for all x ∈ I, ψk(0) = ψk(1) = 0,

and {ψk}k∈N is an Hilbert basis of L2(I).

Remark 1.2. In the case V ≡ 0 we can solve explicitly (1) and find

εk = π2(k + 1)2 and ψk(x) =
1√
π
sin(π(k + 1)x).

By Fourier theory, { 1√
π
sin(π(k + 1)x)}k∈N is an Hilbert basis of L2(I).

Theorem 1.1 is a far reaching generalisation of this example as, for a general V ,
there is no hope to give formulas for the ψk’s.

Before starting the proof let us show a typical application of Theorem 1.1.

Example 1.3. Consider the Schrödinger equation

i∂tw = Hw, H := − d2

dx2
+ V (x), w(t, 0) = w(t, 1) = 0, w(0, x) = f(x),

where w(t, x) : R×I → C and f ∈ L2(I)1. By Theorem 1.1 there is an orthonormal
basis {ψk} such that Hψk = εkψk, for some “energies” εk. If we express then the
initial state f(x) =

∑
k⟨f, ψk⟩ψk(x) we find that the solution w must be given by

w(t, x) =
∑
k

⟨f, ψk⟩e−iεktψk(x),

where the series converges at least in the L2 sense (and much better if f is assumed
to be more regular).

Notice that if f = ψN , then w(t, x) = e−iεN tψN (x), and in particular |w| is
constant, this is why the ψk’s are called steady states.

2. Proof of Theorem 1.1

2.1. The Spectral Theorem. As anticipated, the proof of Theorem 1.1 relies on

Theorem 2.1 (Spectral Theorem). Let H be an Hilbert space and let T ∈ L(H) be
compact and symmetric. Then there is a real infinitesimal sequence {λk}k∈N and
an Hilbert basis {ek}k ∈ N of H such that

Tv =
∑
k

λk⟨v, ek⟩ek for all v ∈ H.

Proof. See the Lecture Notes. □

1In Quantum Mechanics, |w(t, x)|2 dx represents the probability of finding at time t in the
interval [x, x + dx] a quantum particle, prepared at time t = 0 in the state f(x), subject to the
Hamiltonian H and confined to live in a box x ∈ I.
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2.2. An auxiliary Hilbert space. Define the scalar product

(2) ⟨u, v⟩V :=

ˆ 1

0

u′(x)v′(x) + V (x)u(x)v(x) dx, u, v ∈ C1
c (I).

Notice that for all 0 ≤ x < y ≤ 1 and u ∈ C1
c it holds

|u(x)− u(y)| =
∣∣∣ ˆ y

x

u′(s) ds
∣∣∣ ≤ ˆ y

x

|u′| ≤ ∥u′∥L2(I)|x− y| 12 ≤ ∥u∥V |x− y| 12 .

So in particular

(3) ∥u∥L∞(I) + sup
x,y∈I

|u(x)− u(y)|
|x− y| 12

≤ 2∥u∥V .

We also define the Hilbert space (H, ⟨u, v⟩V ) where

H := C1
c (I)

∥·∥V
.

Thanks to (3), we have H ⊂ C
1
2 (I) and, concretely, u ∈ H if and only if there is a

sequence {uj} ⊂ C1
c (I) such that

{uj} is Cauchy with respect to ∥ · ∥V and uj → u in L2(I).

The key observation is the following

Proposition 2.2. The inclusion H ⊂ L2(I) is compact: if {wj} ⊂ H is bounded,

then a subsequence converges strongly in C(I) and thus in L2(I).

Proof. For each j ∈ N, by definition, we can write wj = w̃j + ξj with

w̃j ∈ C1
c (I) and ∥ξj∥V ≤ 2−j .

If M := supj ∥wj∥V then ∥w̃j∥V ≤M + 1 and so by (3) we have

∥w̃j∥L∞(I) + sup
x,y∈I

|w̃j(x)− w̃j(y)|
|x− y| 12

≤ 2M + 2.

Thus the family of continuous functions {w̃j} ⊂ C(I) is equibounded and equicon-

tinuous, so — by Ascoli-Arzelá — has a subsequence w̃j′ → w̄ uniformly in C(I).

By (3), we also have ξj′ → 0 uniformly, so in conclusion wj′ → w̄ in C(I). □

We conclude remarking that every u ∈ H must vanish at the endpoints if I.

Exercise 2.3. By approximation, show that sin(πkx) ∈ H for all k ∈ N. More
generally, show that if v ∈ C1(I) ∩C(I) with

´
I
v̇2 <∞ and v(0) = v(1) = 0, then

v ∈ H.

2.3. Weak formulation of (1). Given f ∈ L2(I), we say that u ∈ H solves (1)
weakly if

(4) ⟨u,w⟩V = ⟨f, w⟩L2 for all w ∈ H.
Let us motivate this definition, assume for a second that u, f are smooth and

−u′′ + V u = f.

If we multiply both sides of the equation by w ∈ C1
c (I) and integrate over I we find

−
ˆ
I

u′′w + V uw =

ˆ
I

fw.

Now we can integrate by parts the first integral (the boundary term vanish!) and
find

⟨u,w⟩V =

ˆ
I

u′w′ + V uw =

ˆ
I

fw = ⟨f, w⟩L2 .

The following proposition will be crucial to “go back” from the weak formulation
(4) to the classical one (1).
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Proposition 2.4. Let f ∈ L2(I) and u ∈ H satisfying (4). Then

k2ck(u) = ck(f − V u) for all k ∈ N.

Proof. Fix k ∈ N. By the Exercise above w := 1√
π
sin(kπx) ∈ H. Write u = ũj + ξj

with ∥ξj∥V ≤ 2−j . Then we have

ck(f) = ⟨f, w⟩L2(I) = ⟨u,w⟩V = ⟨ũj , w⟩V + ⟨ξj , w⟩V

=

ˆ
I

ũ′jw
′ +

ˆ
I

V ũjw + ⟨ξj , w⟩V

= k2
ˆ
I

ũjw +

ˆ
I

V ũjw + ⟨ξj , w⟩V .

Passing to the limit as j → ∞ we find

ck(f) = k2ck(u) + ck(V u).

□

2.4. Existence if weak solutions and the operator T . We start solving (4).

Lemma 2.5. Given f ∈ L2(I) there exists a unique u ∈ H such that (4) holds.

Proof. The linear functional

F : H → R, F (w) := ⟨f, w⟩L2(I),

is bounded in H since for all w ∈ H it holds

|F (w)| ≤ ∥f∥L2(I)∥w∥L2(I) ≤ 2∥f∥L2(I)∥w∥V .

Thus, by Riesz’ representation Theorem in H, there is a unique u ∈ H such that

⟨u,w⟩V = ⟨f, w⟩L2(I) for all w ∈ H.

This means exactly that there is a unique solution u to (4). □

This Lemma defines a bounded linear operator T̃ : L2(I) → H as

T̃ : L2(I) ∋ f 7→ u ∈ H which solves (4) for f .

Then we define the compact operator T : L2(I) → L2(I) as the composition

T : L2(I)
T̃→ H ↪−→ L2(I).

This operator is compact because of Proposition 2.2.
Let us check that T is symmetric:

⟨f, Tg⟩L2(I) = ⟨Tf, Tg⟩V = ⟨Tg, Tf⟩V = ⟨g, Tf⟩L2(I).

2.5. Conclusion of the proof. Since T is compact and symmetric on L2(I), the
Spectral Theorem 2.1 applies: there is a sequence of eigenvalues λj → 0 and a
complete orthonormal system of eigenfunctions ψj ∈ L2(I) such that

λj⟨ψj , w⟩V = ⟨ψj , w⟩L2(I), for all w ∈ H, j ∈ N.

Notice that ran(T ) ⊂ H, so we have ψj ∈ H. Taking w = ψj we also find that
λj > 0 for all j ∈ N.

In order to conclude the proof of Theorem 1.1 we must prove that each ψj is
in fact C∞ in I. This is done by the so called “bootstrap” procedure, applying
repeatedly Proposition 2.4.

First we have ψj − V ψj ∈ L2(I), so

{k2ck(ψj)}k ∈ ℓ2(N).
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This immediately gives ψj ∈ C1(I) and ψ′
j ∈ L2(I), so ψ′

j − (V ψj)
′ ∈ L2(I). Then

we find
{k2ck(ψj − V ψj)}k ∈ ℓ2(N).

Again Proposition 2.4 gives

{k4ck(ψj)}k ∈ ℓ2(N),
which in turn implies ψj ∈ C2(I) and ψ′′

j ∈ L2(I). Thus ψ′′
j − (V ψj)

′′ ∈ L2(I) and
we find

{k4ck(ψj − V ψj)}k ∈ ℓ2(N).
and so

{k6ck(ψj)}k ∈ ℓ2(N).
It is clear that this procedure never stops and shows

kMck(ψj) ∈ ℓ2(N) for all M ≥ 1,

so ψj ∈ C∞(I). Finally, by Proposition 2.4 we find

ck(−λjψ′′
j + V ψj − ψj) = 0 for all k ∈ N,

and the only possibility is that each ψj solves

λjψ
′′
j (x) + V (x)ψj(x) = ψj(x) for all x ∈ I.

Theorem 1.1 follows setting εj := 1/λj .
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