TOPOLOGY SPRING 2024 SERIE 10

(1) Let $B = \{1/n \mid n \ge 1\} \subset \mathbf{R}$. Define a topology \mathscr{T}^* on \mathbf{R} with basis $\mathscr{B} = \mathscr{B}_1 \cup \mathscr{B}_2$, where

$$\mathscr{B}_1 = \{]a, b[\mid a < b \text{ in } \mathbf{R} \}$$

 $\mathscr{B}_2 = \{]a, b[\setminus B \mid a < b \text{ in } \mathbf{R} \}$

i.e., a set $U \subset \mathbf{R}$ is open for \mathscr{T}^* if and only if it is an arbitrary union of sets in \mathscr{B} .

(a) Show that \mathscr{T}^* is indeed a topology, and that **R** is Hausdorff with this topology. (b) Let $A = \{0\}$. Show that the sets A and B are closed in $(\mathbf{R}, \mathscr{T}^*)$.

- We now suppose that U and V are open sets with $0 \in U$, $B \subset V$, and that $U \cap V = \emptyset$.
- (c) Show that there exist a < b such that a < 0 < b and $[a, b] \setminus B \subset U$.
- (d) Show that there exists an integer $n \ge 1$ such that $1/n \in [a, b]$.
- (e) Show that $1/n \in V$ and that there exist c < 1/n < d such that $]c, d] \subset V$.
- (f) Show that there exists $x \in \mathbf{R}$ such that

$$\frac{1}{n+1} < x < \frac{1}{n}, \qquad x > c.$$

- (g) Show that $x \in U$ and that $x \in V$.
- (h) Conclude that $(\mathbf{R}, \mathscr{T}^*)$ is not normal. (In fact, it is not even *regular*, where a space is called regular if it is Hausdorff and for any $x \in X$ and $B \subset X$ closed not containing x, there are disjoint open sets U and V with $x \in U$ and $B \subset V$.)
- (2) Let X be a normal topological space. Let

$$\mathscr{F} = \{ f \colon X \to [0, 1] \mid f \text{ is continuous} \}.$$

For $f \in \mathscr{F}$, let $X_f = [0, 1]$, and let

$$\varphi\colon X\to \prod_{f\in\mathscr{F}}X_f$$

be the map defined by

$$\varphi(x) = (f(x))_{f \in \mathscr{F}}.$$

We denote $Y = \varphi(X)$.

- (a) Show that φ is injective.
- (b) Show that φ is continuous when the product space has the product topology.
- (c) Let $y = \varphi(x)$ be an element of Y. Show that a fundamental system of open neighborhoods of y in Y is given by the sets

 $\{\varphi(z) \mid z \in X \text{ satisfies } |f_j(z) - f_j(x)| < \varepsilon_j \text{ for all } j \in J\},\$

where $f_j \in \mathscr{F}$ for all $j \in J$, J runs over finite sets and ε_j runs over positive reals for all $j \in J$.

(d) Let U be open in X and let $x_0 \in U$. Show that there exists an open neighborhood V of x_0 such that $V \subset \overline{V} \subset U$, and a function $g \in \mathscr{F}$ such that

 $\{z\in X \ | \ g(z)>1/2\}\subset U.$

- (e) Deduce that the map $\varphi \colon X \to Y$ is a homeomorphism. (Hint: show using the previous questions that the image by φ of an open set in X is open in Y.)
- (f) Deduce that X is homeomorphic to a subspace of a compact space.
- (3) Let X be a normal space. For a continuous function $f: X \to \mathbf{C}$, we define the support of f, denoted Supp(f), to be

$$\operatorname{Supp}(f) = \overline{f^{-1}(\mathbf{C} \setminus \{0\})}$$

(the closure of the set of x where $f(x) \neq 0$).

Given a finite family $(U_i)_{1 \le i \le k}$ of open subsets of X whose union is X, a partition of unity subordinate to this covering is a finite family $(f_i)_{1 \le i \le k}$ of continuous functions $f_i: X \to [0, 1]$ such that

- We have $\operatorname{Supp}(f_i) \subset U_i$ for all i.
- We have

$$\sum_{i=1}^{k} f_i(x) = 1$$

for all $x \in X$.

The goal of the exercise is to show that there always exists such a partition of unity.

- (a) Show that given a finite open covering $(U_i)_{1 \le i \le k}$, for $1 \le i \le k$ we can find $V_i \subset U_i$, open, with $\overline{V}_i \subset U_i$, such that $(V_i)_{1 \le i \le k}$ is a covering of X. (Hint: show by induction on $j \le k$ that there are V_i , $i \le j$, with $\overline{V}_i \subset U_i$, such that $(V_1, \ldots, V_j, U_{j+1}, \ldots, U_k)$ cover X.)
- (b) Show that there are coverings $(W_i)_{1 \le i \le k}$ and $(V_i)_{1 \le i \le k}$ and functions $g_i \colon X \to [0, 1]$ such that

$$\overline{W}_i \subset V_i \subset \overline{V}_i \subset U_i,$$

and

$$g_i(x) = \begin{cases} 1 & \text{if } x \in W_i, \\ 0 & \text{if } x \in X \setminus V_i. \end{cases}$$

(c) Show that $\operatorname{Supp}(g_i) \subset U_i$ and that

$$\sum_{i=1}^{\kappa} g_i(x) > 0$$

for all $x \in X$.

- (d) Deduce the existence of a partition of unity subordinate to (U_i) .
- (4) Let X be a compact Hausdorff topological manifold of dimension $d \ge 1$. The goal of this exercise is to show that there exists some integer $m \ge 1$ and a compact subset $C \subset \mathbf{R}^m$ homeomorphic to X.

- (a) Show that there exist a finite covering $(U_i)_{1 \le i \le k}$ of X by open sets such that for
- (b) Explain why there exists a partition of unity (f_i)_{1≤i≤k} where W_i ⊂ R^d is open.
 (c) Explain why there exists a partition of unity (f_i)_{1≤i≤k} subordinate to (U_i) (as defined in the previous exercise). Show that the functions g_i: X → R^d defined by

$$g_i(x) = \begin{cases} f_i(x)\varphi_i(x) & \text{if } x \in U_i, \\ 0 & \text{if } x \in X \setminus \text{Supp}(f_i) \end{cases}$$

are continuous (where the support of f_i is defined also in the previous exercise). (c) Show that the map $\varphi \colon X \to \mathbf{R}^k \times \mathbf{R}^{dk}$ defined by

$$\varphi(x) = (f_1(x), \dots, f_k(x), g_1(x), \dots, g_k(x))$$

is injective. (Hint: if $\varphi(x) = \varphi(y)$, show that there exists i such that $x \in U_i$ and $y \in U_i$.)

(d) Show that φ is continuous and that it defines a homeomorphism

$$\varphi \colon X \to \varphi(X) \subset \mathbf{R}^{k+dk}.$$