TOPOLOGY SPRING 2024
 SERIE 11

(1) A topological space X is called path-connected if, for every x and y in X, there exists a path $\gamma:[0,1] \rightarrow X$ such that $\gamma(0)=x$ and $\gamma(1)=y$.
(a) Show that if X is path-connected, then it is connected.
(b) Show that the relation \sim defined by $x \sim y$ if and only if there exists a path in X from x to y is an equivalence relation.
(c) Show that the equivalence class of some $x \in X$ for the relation \sim is contained in the connected component of x in X. This equivalence class is called the path-connected component of x.
(d) We now assume that X is a connected topological manifold. Show that the path-connected component of any $x \in X$ is open.
(e) Let X be a contractible space. Show that X is path connected. (Hint: if Id_{X} is homotopic to the constant x_{0}, show first that for all x, there is a path in X from x to x_{0}.)
(2) Let X be the subspace

$$
C=\{(0,1)\} \cup \bigcup_{n \geq 1}(\{1 / n\} \times[0,1]) \cup([0,1] \times\{0\}) \subset \mathbf{R}^{2}
$$

of the plane, with the induced topology.
(a) Prove that C is connected. (Hint: sketch C.)
(b) Let $\gamma:[0,1] \rightarrow C$ be a path with $\gamma(0)=(0,1)$ and let $Y=\gamma^{-1}(\{(0,1)\})$. Show that $Y \subset[0,1]$ is closed and not empty.
(c) Let $t_{0} \in Y$. Let $\varepsilon>0$ be a real number with $\varepsilon<1 / 2$ and let

$$
V=\{(x, y) \in C| | x|+|y-1|<\varepsilon\} .
$$

Show that there exist real numbers a, b with $0<a<t_{0}<b<1$ such that $\gamma(] a, b[) \subset V$.
(d) Show that $\gamma(] a, b[) \subset V$ is connected.
(e) Deduce that $\gamma(] a, b[)=\{(0,1)\}$. (Hint: note first that $\gamma(] a, b[)$ does not intersect the real axis; show further that $\gamma(] a, b[)$ cannot contain an element of the form ($1 / n, u$) for some $n \geq 1$, using the previous question.)
(f) Deduce that Y is open in $[0,1]$.
(g) Conclude that C is not path-connected.
(3) Let X and Y be topological spaces. A continuous map $f: X \rightarrow Y$ is called a homotopy equivalence if there exists a continuous map $g: Y \rightarrow X$ such that $f \circ g$ is homotopic to Id_{Y} and $g \circ f$ is homotopic to Id_{X}. If there exists a homotopy equivalence from X to Y, then X and Y are said to have the same homotopy type.
(a) Show that the relation " X has the same homotopy type as Y " is an equivalence relation on topological spaces.
(b) If $f: X \rightarrow Y$ is a homotopy equivalence, show that the homotopy class in $[Y, X]$ of a map $g: Y \rightarrow X$ such that $f \circ g \sim \operatorname{Id}_{Y}$ and $g \circ f \sim \operatorname{Id}_{X}$ is unique. This class is called the homotopy inverse of f.
(c) Show that if $f: X \rightarrow Y$ is a homotopy equivalence with homotopy inverse g and $f^{\prime}: Y \rightarrow Z$ is a homotopy equivalence with homotopy inverse g^{\prime}, then $f^{\prime} \circ f$ is a homotopy equivalence, with homotopy inverse $g \circ g^{\prime}$.
(d) Show that X has the same homotopy type as a one-point space $\left\{x_{0}\right\}$ if and only if X is contractible.
(e) Show that if X has the same homotopy type as a point, then for any space Y, any continuous map $Y \rightarrow X$ is homotopic to a constant map, and any continuous map $X \rightarrow Y$ is homotopic to a constant map.
(4) A subspace Y of a topological space X is called a retract of X if there exists a continuous map $r: X \rightarrow Y$ such that $r(y)=y$ for all $y \in Y$.
(a) If Y is a retract of X and $y_{0} \in Y$, show that the group morphism

$$
\pi_{1}\left(Y, y_{0}\right) \rightarrow \pi_{1}\left(X, y_{0}\right)
$$

induced by the inclusion $Y \rightarrow X$ is injective.
(b) For $n \geq 1$, show that

$$
\mathbf{S}_{n-1}=\left\{x \in \mathbf{R}^{n} \mid\|x\|=1\right\}
$$

is a retract of $\mathbf{R}^{n} \backslash\{0\}$.
(c) Show that the fundamental group of $\mathbf{R}^{2} \backslash\{0\}$ is not trivial.
(d) Show that \mathbf{S}_{1} is not a retract of \mathbf{R}^{2}. (Hint: show that this would imply that \mathbf{S}_{1} is contractible.)
(5) Let $D=\{z \in \mathbf{C}| | z \mid \leq 1\}$ be the unit disc in \mathbf{C}. Let $f: D \rightarrow D$ be a continuous map. We assume that $f(z) \neq z$ for all $z \in D$.
(a) Show that there is a well-defined map $g: D \rightarrow \mathbf{S}_{1}$ which maps z to the intersection point of the line joining z and $f(z)$ with \mathbf{S}_{1}.
(b) Show that g is continuous.
(c) Deduce a contradiction and conclude that there must exist a fixed point of f. (Hint: use the previous exercise.)
The result of this exercise is Brouwer's fixed-point theorem, in dimension 2 (it is also valid for the unit ball in \mathbf{R}^{n} for $n \geq 3$).

