TOPOLOGY SPRING 2024
 SERIE 12

(1) Let $X \subset \mathbf{R}^{2}$ be the union of the circles C_{n} with radius $1 / n$ centered at $(1 / n, 0)$ for all $n \geq 1$. Each of them passes by the origin (0,0), and we let $x_{0}=(0,0) \in X$. The goal of this exercise is to prove that $\pi_{1}\left(X, x_{0}\right)$ is an uncountable group (where X has the subspace topology from \mathbf{R}^{2}).
(a) Show that X is path-connected (an intuitive explanation is enough).
(b) Show that if U is a neighborhood of x_{0}, then there exists N such that $C_{n} \subset U$ for all $n \geq N$.
(c) Let $n \geq 1$ be an integer. Show that the map $r_{n}: X \rightarrow C_{n}$ such that

$$
r_{n}(x)= \begin{cases}x & \text { if } x \in C_{n} \\ x_{0} & \text { if } x \notin C_{n}\end{cases}
$$

is continuous. (Hint: since X is a metric space, you can use sequences here.)
(d) Show that the induced map $r_{n *}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(C_{n}, x_{0}\right)$ is surjective.
(e) For $n \geq 1$, let $\gamma_{n}:[0,1] \rightarrow C_{n}$ be a loop at x_{0} on C_{n}. Define $\gamma:[0,1] \rightarrow X$ by
$\gamma(t)=\gamma_{n}\left(n(n+1)\left(t-1+\frac{1}{n}\right)\right)$ if n is such that $1-\frac{1}{n} \leq t<1-\frac{1}{n+1}$
and $\gamma(1)=x_{0}$. Show that γ is a well-defined continuous loop at x_{0}. (Hint: for continuity, Question (b) will be useful.)
(f) Show that the class of $r_{n *}(\gamma)$ in $\pi_{1}\left(C_{n}, x_{0}\right)$ is the class of γ_{n} in $\pi_{1}\left(C_{n}, x_{0}\right)$ for all $n \geq 1$.
(g) Conclude that there is a surjective group morphism

$$
\pi_{1}\left(X, x_{0}\right) \rightarrow \prod_{n} \pi_{1}\left(C_{n}, x_{0}\right)
$$

and that $\pi_{1}\left(X, x_{0}\right)$ is uncountable.
(2) Let X be a topological space and $x_{0} \in X$. Let $\left(U_{i}\right)_{i \in I}$ be open sets in X, all containing x_{0}, such that X is the union of the U_{i} 's and $U_{i} \cap U_{j}$ is path-connected for all i and j in I.
(a) Let $\gamma:[0,1] \rightarrow X$ be a loop at x_{0}. Show that there exists an integer $m \geq 1$ and real numbers

$$
t_{0}=0<t_{1}<\cdots<t_{m-1}<t_{m}=1
$$

such that for $0 \leq k<m$, the subset $\gamma\left(\left[t_{k}, t_{k+1}\right]\right)$ is contained in $U_{i(k)}$ for some $i(k) \in I$.
(b) Show that there exist loops γ_{k} at x_{0} for $1 \leq k \leq m$ such that

$$
\begin{gathered}
\gamma \sim_{p} \gamma_{1} \cdots \gamma_{m} \\
1
\end{gathered}
$$

and moreover $\gamma_{k}([0,1]) \subset U_{i(k)}$, where \sim_{p} is the relation of path-homotopy. (Hint: a picture, in the case where I has two elements, will help constructing the γ_{k} 's.)
(c) If $\pi_{1}\left(U_{i}, x_{0}\right)=\left\{\varepsilon_{x_{0}}\right\}$ for all i, deduce that $\pi_{1}\left(X, x_{0}\right)=\left\{\varepsilon_{x_{0}}\right\}$.
(3) Let X be a topological space. Let $\left(A_{i}\right)_{i \in I}$ be subsets of X which are path-connected and such that

$$
\bigcap_{i \in I} A_{i}
$$

is not empty. Prove that

$$
\bigcup_{i \in I} A_{i}
$$

is path-connected.
(4) Let

$$
\mathbf{S}_{2}=\left\{(x, y, z) \in \mathbf{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\} .
$$

Let $p=(1,0,0)$ and $q=(-1,0,0)$ in \mathbf{S}_{2}.
(a) Show that \mathbf{S}_{2} and $\mathbf{S}_{2} \backslash\{p, q\}$ are path-connected. (Hint: there are many different solutions; for instance you can use the previous exercise, or describe explicit paths joining two points.)
(b) Let $x_{0}=(0,1,0)$. Show that $\pi_{1}\left(\mathbf{S}_{2} \backslash\{p\}, x_{0}\right)$ and $\pi_{1}\left(\mathbf{S}_{2} \backslash\{q\}, x_{0}\right)$ are both trivial groups.
(c) Deduce that $\pi_{1}\left(\mathbf{S}_{2}, x\right)=\left\{\varepsilon_{x}\right\}$ for all $x \in \mathbf{S}_{2}$.

