TOPOLOGY SPRING 2024 SERIE 2

- (1) Sei X eine Menge.
 - (a) Seien d_1 und d_2 Metriken auf X, so dass es a, b > 0 gibt mit

$$d_1(x,y) \le d_2(x,y)^a$$

und

$$d_2(x,y) \le d_1(x,y)^b$$

für alle $(x,y) \in X \times X$. Beweisen Sie, dass d_1 und d_2 dieselbe Topologie auf X induzieren.

(b) Sei d eine Metrik auf X. Zeigen Sie, dass

$$\delta(x,y) = \frac{d(x,y)}{1 + d(x,y)}$$

eine Metrik auf X definiert. Zeigen Sie, dass δ und d dieselben Topologien definieren. Zeigen Sie $\delta(x,y) \leq 1$ für alle $(x,y) \in X \times X$. (Dies zeigt, dass man in jedem metrischen Raum die Metrik so ändern kann, dass zwei beliebige Punkte den Abstand ≤ 1 haben, ohne die Topologie zu ändern.)

(2) Sei $X = \mathbb{R}^2$. Sei d die euklidische Metrik auf X. Definiere:

$$\delta(x,y) = \begin{cases} d(x,y) & \text{falls } x = \lambda y \text{ für ein } \lambda \in \mathbf{R}, \\ d(x,0) + d(0,y) & \text{ansonsten} \end{cases}$$

 $\text{für } (x,y) \in \mathbf{R}^2.$

- (a) Zeigen Sie, dass δ eine Metrik auf \mathbb{R}^2 ist.
- (b) Geben Sie eine geometrische Beschreibung der Mengen

$$B_{\delta}((x_0, y_0), r) = \{(x, y) \in \mathbf{R}^2 \mid \delta((x_0, y_0), (x, y)) < r\}.$$

- (c) Zeigen Sie, dass jede offene Menge der euklidischen Topologie eine offene Menge der Topologie \mathscr{T}_{δ} ist. (\mathscr{T}_{δ} ist die von δ induzierte Topologie).
- (d) Beweisen Sie, dass es offene Mengen bezüglich \mathscr{T}_{δ} gibt, die nicht offen bezüglich \mathscr{T}_{d} sind.
- (3) Sei X eine Menge.

- (a) Zeigen Sie, dass eine Topologie $\mathscr T$ auf X die diskrete Topologie ist, genau dann wenn für alle $x \in X$ die Menge $\{x\}$ offen ist bezüglich $\mathscr T$.
- (b) Finden Sie eine Metrik d auf X, so dass d die diskrete Topologie induziert.
- (4) Sei C der Cantor-Raum der Folgen $(x_n)_{n\geq 1}$ mit $x_n\in\{0,1\}$. Statten Sie C mit der in der Vorlesung definierten Topologie aus.
 - (a) Zeigen Sie, dass die Funktion

$$t: C \to [0,1], \ t((x_n)) = \sum_{n>1} \frac{2x_n}{3^n}$$

wohldefiniert, stetig und injektiv ist.

(b) Zeigen Sie, dass das Bild von t in [0,1] geschlossen ist. (Tipp: Zeigen Sie, dass das Komplement offen ist; dazu kann man verwenden, falls $x \in [0,1]$ nicht im Bild von C liegt, dann gibt es eine ternäre Erweiterung

$$x = \sum_{n \ge 1} \frac{a_n}{3^n}$$

mit $a_n \in \{0, 1, 2\}$ und mindestens einem a_n gleich 1).

(c) Zeigen Sie, dass die Inverse $t^{-1}: t(C) \to C$ stetig ist. (Damit ist C homöomorph zur Teilmenge t(C) von [0,1].) Bemerkung: Wir werden bald sehen, dass (b) und (c) unmittelbar aus der Kompaktheit von C folgt.