TOPOLOGY SPRING 2024 SERIE 2

- (1) Let X be a set.
 - (a) Let d_1 and d_2 be distances on X. If there exist a, b > 0 such that

$$d_1(x,y) \le d_2(x,y)^a$$

and

$$d_2(x,y) \le d_1(x,y)^b$$

for all $(x, y) \in X \times X$, show that the topologies defined by d_1 and d_2 are the same;

(b) Let d be a distance on X. Show that

$$\delta(x,y) = \frac{d(x,y)}{1+d(x,y)}$$

is a distance on X. Show that the topology defined by δ is the same as the topology defined by d. Show that $\delta(x, y) \leq$ 1 for all $(x, y) \in X \times X$. (This shows that in any metric space, one can change the distance so that any two points are at distance ≤ 1 without changing the topology.)

(2) Let $X = \mathbf{R}^2$. Let d denote the euclidean distance on X. Define

$$\delta(x,y) = \begin{cases} d(x,y) & \text{if } x \text{ and } y \text{ are proportional,} \\ d(x,0) + d(0,y) & \text{if } x \text{ and } y \text{ are not proportional} \end{cases}$$

for $(x, y) \in \mathbf{R}^2$.

- (a) Show that δ is a distance on \mathbb{R}^2 .
- (b) Give a geometric description of the sets

 $B_{\delta}((x_0, y_0), r) = \{(x, y) \in \mathbf{R}^2 \mid \delta((x_0, y_0), (x, y)) < r\}.$

- (c) Show that any open set for the euclidean topology \mathscr{T}_d is an open set for the topology \mathscr{T}_δ defined by δ .
- (d) Show that the converse is false: there are open sets for \mathscr{T}_{δ} which are not open for \mathscr{T}_{d} .
- (3) Let X be a set.
 - (a) Show that a topology \mathscr{T} on X is the discrete topology if and only if, for all $x \in X$, the singleton $\{x\}$ is open for \mathscr{T} .
 - (b) Find a metric d on X such that the topology defined by d is the discrete topology on X.

- (4) Let C be the Cantor space of sequences $(x_n)_{n\geq 1}$ with $x_n \in$ $\{0,1\}$, with the topology defined in the lecture.
 - (a) Show that the map

$$t: C \to [0, 1]$$

such that

$$t((x_n)) = \sum_{n \ge 1} \frac{2x_n}{3^n}$$

is well-defined and that it is continuous and injective.

(b) Show that the image of t is closed in [0, 1]. (Hint: show that the complement is open; for this, you can use that if $x \in [0,1]$ is not in the image of C, then there is a ternay expansion

$$x = \sum_{n \ge 1} \frac{a_n}{3^n}$$

where $a_n \in \{0, 1, 2\}$ and at least one a_n is equal to 1.) (c) Show that the reciprocal map $t^{-1}: t(C) \to C$ is continuous. (So that C is homeomorphic to the subset t(C) of [0, 1].) Remark: soon, we will see that (b) and (c) follow immediately from the abstract property that C is *compact*.