TOPOLOGY SPRING 2024
 SERIE 2

(1) Let X be a set.
(a) Let d_{1} and d_{2} be distances on X. If there exist $a, b>0$ such that

$$
d_{1}(x, y) \leq d_{2}(x, y)^{a}
$$

and

$$
d_{2}(x, y) \leq d_{1}(x, y)^{b}
$$

for all $(x, y) \in X \times X$, show that the topologies defined by d_{1} and d_{2} are the same;
(b) Let d be a distance on X. Show that

$$
\delta(x, y)=\frac{d(x, y)}{1+d(x, y)}
$$

is a distance on X. Show that the topology defined by δ is the same as the topology defined by d. Show that $\delta(x, y) \leq$ 1 for all $(x, y) \in X \times X$. (This shows that in any metric space, one can change the distance so that any two points are at distance ≤ 1 without changing the topology.)
(2) Let $X=\mathbf{R}^{2}$. Let d denote the euclidean distance on X. Define
$\delta(x, y)= \begin{cases}d(x, y) & \text { if } x \text { and } y \text { are proportional, } \\ d(x, 0)+d(0, y) & \text { if } x \text { and } y \text { are not proportional }\end{cases}$
for $(x, y) \in \mathbf{R}^{2}$.
(a) Show that δ is a distance on \mathbf{R}^{2}.
(b) Give a geometric description of the sets
$B_{\delta}\left(\left(x_{0}, y_{0}\right), r\right)=\left\{(x, y) \in \mathbf{R}^{2} \mid \delta\left(\left(x_{0}, y_{0}\right),(x, y)\right)<r\right\}$.
(c) Show that any open set for the euclidean topology \mathscr{T}_{d} is an open set for the topology \mathscr{T}_{δ} defined by δ.
(d) Show that the converse is false: there are open sets for \mathscr{T}_{δ} which are not open for \mathscr{T}_{d}.
(3) Let X be a set.
(a) Show that a topology \mathscr{T} on X is the discrete topology if and only if, for all $x \in X$, the singleton $\{x\}$ is open for \mathscr{T}.
(b) Find a metric d on X such that the topology defined by d is the discrete topology on X.
(4) Let C be the Cantor space of sequences $\left(x_{n}\right)_{n \geq 1}$ with $x_{n} \in$ $\{0,1\}$, with the topology defined in the lecture.
(a) Show that the map

$$
t: C \rightarrow[0,1]
$$

such that

$$
t\left(\left(x_{n}\right)\right)=\sum_{n \geq 1} \frac{2 x_{n}}{3^{n}}
$$

is well-defined and that it is continuous and injective.
(b) Show that the image of t is closed in $[0,1]$. (Hint: show that the complement is open; for this, you can use that if $x \in[0,1]$ is not in the image of C, then there is a ternay expansion

$$
x=\sum_{n \geq 1} \frac{a_{n}}{3^{n}}
$$

where $a_{n} \in\{0,1,2\}$ and at least one a_{n} is equal to 1 .)
(c) Show that the reciprocal map $t^{-1}: t(C) \rightarrow C$ is continuous. (So that C is homeomorphic to the subset $t(C)$ of $[0,1]$.) Remark: soon, we will see that (b) and (c) follow immediately from the abstract property that C is compact.

