TOPOLOGY SPRING 2024 SERIE 3

- (1) Sei X der Raum der aller Funktionen von R nach C mit der Topologie der punktweisen Konvergenz \mathscr{T}_p .
 - (a) Sei $A \subset X$ eine beliebige Teilmenge. Zeigen Sie, dass $0 \in \bar{A}$ genau dann wenn es für jedes $x \in \mathbf{R}$ und jedes $\varepsilon > 0$ ein $f \in A$ gibt mit $|f(x)| < \varepsilon$.
 - (b) Für $t \in \mathbf{R}$ sei $g_t \in X$ die Funktion definiert durch $g_t(x) = x t$. Wir definieren $A = \{g_t \mid t \in \mathbf{R}\}$. Zeigen Sie, dass $0 \notin A$ und dass $0 \in A$ ist.
 - (c) Zeigen Sie, dass es keine Folge (f_n) mit $f_n \in A$ für alle n gibt, so dass $f_n \to 0$ für $n \to +\infty$ (für die Topologie \mathscr{T}_p).
- (2) Sei X der Raum aller Funktionen von C nach C und bezeichne mit \mathscr{T}_p und \mathscr{T}_u die Topologien der punktweisen Konvergenz und der gleichmäßigen Konvergenz. Sei $A \subset X$ die Teilmenge der polynomialen Funktionen $f: \mathbb{C} \to \mathbb{C}$.
 - (a) Zeigen Sie, dass A dicht in (X, \mathcal{T}_p) ist.
 - (b) Zeigen Sie, dass A in (X, \mathcal{T}_p) leer ist.
 - (c) Zeigen Sie, dass für jedes $f \in X$ die Mengen

$$V_{f,n} = \{ g \in X \mid |f(x) - g(x)| < 1/n \text{ für alle } x \in \mathbf{C} \}$$

für n > 1 ein abzählbares fundamentales System von Nachbarschaften (Umgebungsbasis) von f in (X, \mathcal{T}_u) konstituieren.

(d) Zeigen Sie, dass die Teilmenge

$$A_0 = \{ f \in A \mid f(0) = 0 \}$$

diskret in (X, \mathcal{T}_u) ist, d.h. dass die Unterraumtopologie auf A_0 , die durch die Topologie \mathcal{T}_u induziert wird, die diskrete Topologie ist.

(3) Sei $n \geq 0$ eine ganze Zahl. Eine Teilmenge A von \mathbb{C}^n heißt algebraisch, wenn es eine (potenziell beliebige) Menge I und eine Familie $(f_i)_{i\in I}$ von Polynomen $f_i\in$ $\mathbf{C}[X_1,\ldots,X_n]$ gibt, sodass

$$X = \{(x_1, \dots, x_n) \in \mathbf{C}^n \mid f_i(x) = 0 \text{ für alle } i \in I\}.$$

- (a) Zeigen Sie, dass es eine Topologie \mathscr{T}_Z (die "Zariski Topologie") auf \mathbb{C}^n gibt, so dass die $A \subset \mathbb{C}$ geschlossen ist, genau dann wenn A algebraisch ist.
- (b) Zeigen Sie, dass für n=1 die Zariski-Topologie auf C identisch ist mit der Topologie \mathscr{T}_{fin} mit geschlossenen Mengen gegeben durch C und endlichen
- (c) Sei $m \geq 0$ eine ganze Zahl und sei $f: \mathbb{C}^n \to \mathbb{C}^m$ eine Polynomabbildung (d. h. $f(x) = (f_1(x), \dots, f_m(x))$, wobei jedes f_i ein Polynom in $\mathbb{C}[X_1, \dots, X_n]$ ist). Zeigen Sie, dass f für die Zariski-Topologien stetig ist.
- (d) Zeigen Sie, dass die Zariski-Topologie auf \mathbb{C}^n nicht Hausdorff ist für n > 1.
- (e) Zeigen Sie, dass $A \subset \mathbb{C}^n$ für die Zariski-Topologie dicht ist, es sei denn, es existiert $f \in \mathbb{C}[X_1, \dots, X_n], f \neq 0$, so dass

$$A \subset \{x \in \mathbf{C}^n \mid f(x) = 0\}.$$

- (f) Zeigen Sie, dass \mathbf{Z}^n dicht in \mathbf{C}^n ist für die Zariski Topologie. (Tipp: Verwenden Sie die vorherige Frage und argumentieren Sie durch Induktion auf n, indem man ein Polynom f, das auf \mathbf{Z}^n verschwindet, als ein Polynom in X_n mit Koeffizienten in $\mathbf{C}[X_1, \ldots, X_{n-1}]$ schreibt für den Induktionsschritt).
- (4) Sei $n \geq 1$ eine ganze Zahl. Das Ziel dieser Aufgabe ist es zu zeigen, dass wenn $U \subset \mathbb{C}^n$ eine beliebige nichtleere offene Menge für die Zariski-Topologie ist, dann ist U dicht für die Zariski-Topologie. Wir argumentieren durch Widerspruch, nehmen also an, dass

$$\overline{U} \neq \mathbf{C}^n$$
.

- (a) Zeigen Sie, dass es abgeschlossene Mengen $A_1 \neq \mathbf{C}^n$ und $A_2 \neq \mathbf{C}^n$ gibt, sodass $A_1 \cup A_2 = \mathbf{C}^n$.
- (b) Sei

$$I_i = \{ f \in \mathbf{C}[X_1, \dots, X_n] \mid f(x) = 0 \text{ für alle } x \in A_i \}$$

für i = 1, 2. Zeigen Sie $I_1 \cap I_2 = \{0\}$.

- (c) Zeigen Sie, dass entweder $I_1 = \{0\}$ oder $I_2 = \{0\}$ ist, und erhalten Sie einen Widerspruch. (Tipp: Wenn beide ungleich Null sind, dann betrachte ein Produkt $f_1 f_2$ mit $f_i \in I_i$ ungleich Null.)
- (5) Sei $n \geq 1$ eine ganze Zahl. Wir identifizieren den Raum $M_n(\mathbf{C})$ von $n \times n$ Matrizen mit komplexen Koeffizienten mit dem Raum \mathbf{C}^{n^2} . Beweisen Sie, dass die Untermenge der invertierbaren Matrizen $\mathrm{GL}_n(\mathbf{C}) \subset M_n(\mathbf{C})$ offen ist. Folgern Sie, dass jede Polynomfunktion der Einträge von Matrizen, die für alle invertierbaren Matrizen verschwindet, das Nullpolynom ist, also verschwindet für alle Matrizen. (Tipp: Verwenden Sie die vorherige Übung.)