TOPOLOGY SPRING 2024
 SERIE 3

(1) Let X be the space of all functions from \mathbf{R} to \mathbf{C} with the topology of pointwise convergence \mathscr{T}_{p}.
(a) Let $A \subset X$ be any subset. Show that $0 \in \bar{A}$ if and only if, for any $N \geq 1$, any $\left(x_{i}\right) \in \mathbf{R}^{N}$ and any $\varepsilon>0$, there exists $f \in A$ such that $\left|f\left(x_{i}\right)\right|<\varepsilon \forall i$.
(b) Let $A \subset X$ be the subset of monic polynomials with real coefficients. Show that $0 \notin A$ and that $0 \in \bar{A}$. Show that the same holds for A the subset of the indicator functions of the complements of finite sets (i.e $f_{S}(x)=1$ for $x \notin S$ and 0 otherwise, with S finite).
(c) For the set A of the indicator functions in the previous point, show that there exists no sequence $\left(f_{n}\right)$ with $f_{n} \in A$ for all n such that $f_{n} \rightarrow 0$ as $n \rightarrow+\infty$ (for the topology \mathscr{T}_{p}).
(2) Let X be the space of all functions from \mathbf{C} to \mathbf{C}, and denote by \mathscr{T}_{p} and \mathscr{T}_{u} the topologies of pointwise convergence and uniform convergence, respectively. Let $A \subset X$ be the subset of polynomial functions $f: \mathbf{C} \rightarrow \mathbf{C}$.
(a) Show that A is dense in $\left(X, \mathscr{T}_{p}\right)$.
(b) Show that \AA is empty in $\left(X, \mathscr{T}_{p}\right)$.
(c) Show that for any $f \in X$, the sets

$$
V_{f, n}=\left\{g \in X\left|\sup _{\mathrm{C}}\right| f(x)-g(x) \mid<1 / n\right\}
$$

for $n \geq 1$ form a countable fundamental system of neighborhoods of f in $\left(X, \mathscr{T}_{u}\right)$.
(d) Show that the subset

$$
A_{0}=\{f \in A \mid f(0)=0\}
$$

is discrete in $\left(X, \mathscr{T}_{u}\right)$, i.e., the subspace topology on A_{0} induced by the topology \mathscr{T}_{u} is the discrete topology.
(3) Let $n \geq 0$ be an integer. A subset A of \mathbf{C}^{n} is called algebraic if there exists a set I (potentially arbitrary) and a family $\left(f_{i}\right)_{i \in I}$ of polynomials $f_{i} \in \mathbf{C}\left[X_{1}, \ldots, X_{n}\right]$ such that

$$
A=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{C}^{n} \mid f_{i}(x)=0 \text { for all } i \in I\right\} .
$$

(a) Show that there is a topology \mathscr{T}_{Z} (the "Zariski topology") on \mathbf{C}^{n} such that $A \subset \mathbf{C}$ is closed if and only if A is algebraic.
(b) Show that for $n=1$, the Zariski topology on \mathbf{C} is identical with the topology $\mathscr{T}_{\text {fin }}$ with closed sets given by \mathbf{C} and finite sets.
(c) Let $m \geq 0$ be an integer and let $f: \mathbf{C}^{n} \rightarrow \mathbf{C}^{m}$ be a polynomial map (i.e., $f(x)=\left(f_{1}(x), \ldots, f_{m}(x)\right)$ where each f_{i} is a polynomial in $\left.\mathbf{C}\left[X_{1}, \ldots, X_{n}\right]\right)$. Show that f is continuous for the Zariski topologies.
(d) For $n \geq 1$, show that the Zariski topology on \mathbf{C}^{n} is not Hausdorff.
(e) Show that $A \subset \mathbf{C}^{n}$ is dense for the Zariski topology unless there exists $f \in$ $\mathbf{C}\left[X_{1}, \ldots, X_{n}\right], f \neq 0$, such that

$$
A \subset\left\{x \in \mathbf{C}^{n} \mid f(x)=0\right\}
$$

(f) Show that \mathbf{Z}^{n} is dense in \mathbf{C}^{n} for the Zariski topology. (Hint: use the previous question, and argue by induction on n, writing a polynomial f vanishing on \mathbf{Z}^{n} as a polynomial in X_{n} with coefficients in $\mathbf{C}\left[X_{1}, \ldots, X_{n-1}\right]$ for the induction step.)
(4) Let $n \geq 1$ be an integer. The goal of this exercise is to show that if $U \subset \mathbf{C}^{n}$ is any non-empty open set for the Zariski topology, then U is dense for the Zariski topology. We argue by contradiction, so assume that $\bar{U} \neq \mathbf{C}^{n}$.
(a) Show that there exist closed sets $A_{1} \neq \mathbf{C}^{n}$ and $A_{2} \neq \mathbf{C}^{n}$ such that $A_{1} \cup A_{2}=$ C^{n}.
(b) Let

$$
I_{i}=\left\{f \in \mathbf{C}\left[X_{1}, \ldots, X_{n}\right] \mid f(x)=0 \text { for all } x \in A_{i}\right\}
$$

for $i=1,2$. Show that $I_{1} \cap I_{2}=\{0\}$.
(c) Deduce that either $I_{1}=\{0\}$ or $I_{2}=\{0\}$, and derive a contradiction. (Hint: if both are non-zero, consider a product $f_{1} f_{2}$ with $f_{i} \in I_{i}$ non-zero.)
(5) Let $n \geq 1$ be an integer. We identify the space $M_{n}(\mathbf{C})$ of $n \times n$ matrices with complex coefficients with the space $\mathbf{C}^{n^{2}}$. Show that $\mathrm{GL}_{n}(\mathbf{C}) \subset M_{n}(\mathbf{C})$ is open. Deduce that any polynomial function of the entries of a matrix which vanishes for all invertible matrices is the zero polynomial, so vanishes for all matrices. (Hint: use the previous exercise.)

