
TOPOLOGY SPRING 2024
SERIE 3

(1) Let X be the space of all functions from R to C with the topology of pointwise
convergence Tp.
(a) Let A ⊂ X be any subset. Show that 0 ∈ Ā if and only if, for any N ≥ 1,

any (xi) ∈ RN and any ε > 0, there exists f ∈ A such that |f(xi)| < ε ∀i.
(b) Let A ⊂ X be the subset of monic polynomials with real coefficients. Show

that 0 /∈ A and that 0 ∈ Ā. Show that the same holds for A the subset of the
indicator functions of the complements of finite sets (i.e fS(x) = 1 for x /∈ S
and 0 otherwise, with S finite).

(c) For the set A of the indicator functions in the previous point, show that there
exists no sequence (fn) with fn ∈ A for all n such that fn → 0 as n → +∞
(for the topology Tp).

(2) Let X be the space of all functions from C to C, and denote by Tp and Tu

the topologies of pointwise convergence and uniform convergence, respectively.
Let A ⊂ X be the subset of polynomial functions f : C → C.
(a) Show that A is dense in (X,Tp).

(b) Show that Å is empty in (X,Tp).
(c) Show that for any f ∈ X, the sets

Vf,n = {g ∈ X | sup
C

|f(x)− g(x)| < 1/n}

for n ≥ 1 form a countable fundamental system of neighborhoods of f
in (X,Tu).

(d) Show that the subset

A0 = {f ∈ A | f(0) = 0}

is discrete in (X,Tu), i.e., the subspace topology on A0 induced by the topol-
ogy Tu is the discrete topology.

(3) Let n ≥ 0 be an integer. A subset A of Cn is called algebraic if there exists a set I
(potentially arbitrary) and a family (fi)i∈I of polynomials fi ∈ C[X1, . . . , Xn] such
that

A = {(x1, . . . , xn) ∈ Cn | fi(x) = 0 for all i ∈ I}.
(a) Show that there is a topology TZ (the “Zariski topology”) on Cn such that

A ⊂ C is closed if and only if A is algebraic.
(b) Show that for n = 1, the Zariski topology on C is identical with the topol-

ogy Tfin with closed sets given by C and finite sets.
(c) Let m ≥ 0 be an integer and let f : Cn → Cm be a polynomial map (i.e.,

f(x) = (f1(x), . . . , fm(x)) where each fi is a polynomial in C[X1, . . . , Xn]).
Show that f is continuous for the Zariski topologies.

(d) For n ≥ 1, show that the Zariski topology on Cn is not Hausdorff.
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(e) Show that A ⊂ Cn is dense for the Zariski topology unless there exists f ∈
C[X1, . . . , Xn], f ̸= 0, such that

A ⊂ {x ∈ Cn | f(x) = 0}.
(f) Show that Zn is dense in Cn for the Zariski topology. (Hint: use the previous

question, and argue by induction on n, writing a polynomial f vanishing on Zn

as a polynomial in Xn with coefficients in C[X1, . . . , Xn−1] for the induction
step.)

(4) Let n ≥ 1 be an integer. The goal of this exercise is to show that if U ⊂ Cn is
any non-empty open set for the Zariski topology, then U is dense for the Zariski
topology. We argue by contradiction, so assume that Ū ̸= Cn.
(a) Show that there exist closed sets A1 ̸= Cn and A2 ̸= Cn such that A1 ∪A2 =

Cn.
(b) Let

Ii = {f ∈ C[X1, . . . , Xn] | f(x) = 0 for all x ∈ Ai}
for i = 1, 2. Show that I1 ∩ I2 = {0}.

(c) Deduce that either I1 = {0} or I2 = {0}, and derive a contradiction. (Hint:
if both are non-zero, consider a product f1f2 with fi ∈ Ii non-zero.)

(5) Let n ≥ 1 be an integer. We identify the space Mn(C) of n × n matrices with

complex coefficients with the space Cn2
. Show that GLn(C) ⊂ Mn(C) is open.

Deduce that any polynomial function of the entries of a matrix which vanishes for
all invertible matrices is the zero polynomial, so vanishes for all matrices. (Hint:
use the previous exercise.)


