TOPOLOGY SPRING 2024 SERIE 5

(1) Let X be a topological space.

(a) If X is Hausdorff, show that $\{x\}$ is closed in X for all $x \in X$.

We define a set $\widetilde{X} = X \cup \{\eta\}$, where η is any mathematical object not in X. We define a topology on \widetilde{X} so that U is open if and only if either $U = \emptyset$, or $U = V \cup \{\eta\}$ for some open set $V \subset X$.

- (b) Check that this defines a topology, and that the inclusion map $X \to \widetilde{X}$ is continuous.
- (c) Show that the closure of $\{\eta\}$ is equal to \widetilde{X} , i.e., that the single point η is dense in \widetilde{X} .
- (2) Let X be a compact Hausdorff space.
 - (a) Let $x \in X$ and $A \subset X$ be a closed subspace with $x \notin A$. Show that there exists a neighborhood U of x such that $\overline{U} \cap A = \emptyset$. (Hint: adapt the proof that a compact subset of X is closed to find an open neighborhood U of x and an open set V containing A such that $U \cap V = \emptyset$.)

Let $(C_n)_{n\geq 1}$ be a sequence of closed subsets of X with empty interior for all n. Denote

$$C = \bigcup_{n \ge 1} C_n.$$

Let U be a non-empty open subset of X.

(b) Let $U_0 = U$. Show that one can construct by induction a sequence of open set $(U_n)_{n\geq 1}$ such that, for all $n\geq 1$, the properties

$$\begin{cases} \overline{U}_n \cap C_n = \emptyset \\ \overline{U}_n \subset U_{n-1} \end{cases}$$

are satisfied. (Hint: use the fact that each C_n has empty interior, so does not contain any non-empty open set, and (a).)

(c) Show that

$$\bigcap_{n\geq 1}\overline{U}_n\neq \emptyset,$$

and deduce that $U \cap (X \setminus C) \neq \emptyset$.

- (d) Deduce that the interior of C is empty (this is known as the *Baire property*).
- (e) Show that if (V_n) is a sequence of dense open sets in X, the intersection

is still dense in X.

(f) Give an example of a sequence (V_n) of dense open sets in the compact space [0, 1] such that the intersection of the V_n 's is not open.

(3) Let $X = \mathbf{R} \times \{-1, 1\}$ with the product topology (where $\{-1, 1\}$ has the discrete topology). We define an equivalence relation on X so that

$$(x, 1) \sim (x, -1)$$
 if $x \neq 0$,

and there are no further equivalences except equality. (In particular, the equivalence classes o_+ and o_- of the points (0,1) and (0,-1) have only one element, and give different points in Y.)

Let $Y = X/\sim$ be the space of equivalence classes. Let $p: X \to Y$ be the quotient map; define a topology \mathscr{T} on Y so that $U \subset Y$ is open if and only if $p^{-1}(U) \subset X$ is open.

- (a) Show that this defines a topology on Y.
- (b) For $\varepsilon \in \{-1, 1\}$, define a map $i_{\varepsilon} \colon \mathbf{R} \to Y$ that sends x to the equivalence class of (x, ε) . Show that i_{ε} is continuous and injective.
- (c) Show that i_+ has image $Y \setminus \{o_-\}$ and gives a homeomorphism $\mathbf{R} \to Y \setminus \{o_-\}$. Similarly, i_- defines a homeomorphism $\mathbf{R} \to Y \setminus \{o_+\}$.
- (d) Show that Y is a topological manifold of dimension 1 (i.e., for every $y \in Y$, there exists an open neighborhood of y which is homeomorphic to an open subset of **R**).
- (e) Show that every $y \in Y$ has a countable fundamental system of neighborhoods.
- (f) Show that Y is not Hausdorff. In particular, find a sequence (y_n) in Y which converges to both o_+ and o_- .
- (4) Let X be a compact topological space. We denote by $\mathscr{C}(X)$ the set of continuous functions $f: X \to \mathbf{C}$, where **C** has the euclidean topology.
 - (a) Show that $\mathscr{C}(X)$ is a commutative ring, with addition given by (f + g)(x) = f(x) + g(x), multiplication by (fg)(x) = f(x)g(x) and neutral element for multiplication the constant function 1.

Let $I \subset \mathscr{C}(X)$ be an ideal (i.e., a subgroup for addition such that $fg \in I$ whenever $f \in I$ and $g \in \mathscr{C}(X)$). The goal of the exercise is to show that either $I = \mathscr{C}(X)$ or there exists some $x_0 \in X$ such that

$$I \subset m_{x_0} = \{ f \in \mathscr{C}(X) \mid f(x_0) = 0 \}.$$

- (b) Show that the function $x \mapsto |f(x)|^2$ is in I for all $f \in I$.
- (c) Show that m_{x_0} is an ideal whenever $x_0 \in X$.
- (d) Show that if there exists a function $f \in I$ such that $f(x) \neq 0$ for all $x \in X$, then $I = \mathscr{C}(X)$.
- (e) Suppose there is no x_0 such that $I \subset m_{x_0}$. Deduce that for every $x \in X$, there exists an open neighborhood U_x of x and a function $f_x \in I$ such that $f_x(y) \neq 0$ for all $y \in U_x$.
- (f) Deduce that if there is no x_0 such that $I \subset m_{x_0}$, then $I = \mathscr{C}(X)$. (Hint: construct, using the compactness property and the f_x 's, a function in I which has no zero in X.)
- (g) Show that I is a maximal ideal (i.e., an ideal different from $\mathscr{C}(X)$ which is not properly contained in any other ideal) if and only if $I = m_{x_0}$ for some $x_0 \in X$.

(The results of this exercise are related to the *Gelfand equivalence* between compact topological spaces and certains abstract rings.)