TOPOLOGY SPRING 2024
 SERIE 8

(1) Let $X=L^{2}([0,1])$ with the topology defined by the distance

$$
d(f, g)=\left(\int_{0}^{1}|f-g|^{2} d x\right)^{1 / 2}
$$

(a) For $f \in X$ and $\varepsilon>0$, show that the closed ball

$$
B(f ; \varepsilon)=\{g \in X \mid d(f, g) \leq \varepsilon\}
$$

is not compact. (Hint: start with $f=0$ and $\varepsilon=1$, which was an example in the lecture.)
(b) Deduce that X is not locally compact, and in fact that there is no $f \in X$ which has any compact neighborhood.
(2) Let $\left(X_{i}\right)_{i \in I}$ be a family of topological spaces and let

$$
X=\prod_{i \in I} X_{i},
$$

with the product topology.
(a) If X_{i} is Hausdorff for all i, prove that X is also Hausdorff.
(b) Let $Y_{i} \subset X_{i}$ be an arbitrary subset for each i. Show that the subspace topology on

$$
Y=\prod_{i \in I} Y_{i} \subset X
$$

is the product of the subspace topologies of Y_{i}.
(c) Let $Y_{i} \subset X_{i}$ be an arbitrary subset for each i. Show that

$$
\overline{\prod_{i \in I} Y_{i}}=\prod_{i \in I} \bar{Y}_{i}
$$

(d) If $C_{i} \subset X_{i}$ is closed for all i show that the subset

$$
\prod_{i=1}^{c_{i}}
$$

is closed in X.
(e) Give an example of a set I, spaces X_{i} and open subsets $U_{i} \subset X_{i}$ such that

$$
\prod_{i \in \in}^{u_{i}}
$$

is not open in X.
(f) Let $x_{n}=\left(x_{n, i}\right)_{i \in I}$ be elements of X for all $n \geq 1$. Show that the sequence $\left(x_{n}\right)$ converges to an element $x=\left(x_{i}\right)_{i \in I}$ of X if and only if $x_{n, i} \rightarrow x_{i}$ as $n \rightarrow \infty$ for all $i \in I$.
(g) For any $x=\left(x_{i}\right)$ in X, show that the connected component of X is equal to the product of the connected components Y_{i} of x_{i} in X_{i}.
(3) Let $\left(X_{n}, d_{n}\right)_{n \geq 1}$ be a sequence of metric spaces. Denote

$$
X=\prod_{n \geq 1} X_{n}
$$

(a) Show that for $x=\left(x_{n}\right)$ and $y=\left(y_{n}\right)$ in X, the series

$$
d(x, y)=\sum_{n \geq 1} \frac{1}{2^{n}} \frac{d_{n}\left(x_{n}, y_{n}\right)}{1+d_{n}\left(x_{n}, y_{n}\right)}
$$

is (absolutely) convergent and that the function $d: X \times X \rightarrow[0,+\infty[$ it defines is a distance on X.
(b) Show that the topology defined by d is the product topology on X.
(c) Show that if X_{n} is complete for all n, then X is complete. (This fact is also true for an arbitrary product of complete spaces in the sense of uniform structures.)
(d) Assume that X_{n} is compact for all n. Show that if $x_{m}=\left(x_{m, n}\right)_{n \geq 1}$ is an element of X for all $m \geq 1$, then the sequence $\left(x_{m}\right)_{m \geq 1}$ has a convergent subsequence. (Hint: show that for every $N \geq 1$, there exists a sequence $x^{(N)}=\left(x_{k}^{(N)}\right)_{k \geq 1}$ of elements of X such that (1) $x^{(1)}=\left(x_{m}\right) ;(2) x^{(N)}$ is a subsequence of $x^{(N-1)} ;(3)$ for $1 \leq n \leq N$, the sequence of n-th coordinates

$$
\left(x_{k}^{(N)}\right)_{n}
$$

converges as $k \rightarrow+\infty$. To conclude, construct a convergence subsequence of $\left(x_{m}\right)$ by a diagonal argument.)
(e) Deduce that X is compact without using Tychonov's Theorem.
(4) Let X_{1} and X_{2} be topological spaces and $X=X_{1} \times X_{2}$ with the product topology.
(a) Let Y be a topological space and $f: X \rightarrow Y$ a continuous map. For any $\left(x_{1}, x_{2}\right) \in$ $X_{1} \times X_{2}$, show that the maps

$$
f_{x_{2}}:\left\{\begin{array}{l}
X_{1} \rightarrow Y \\
x \mapsto f\left(x, x_{2}\right)
\end{array} \quad, \quad g_{x_{1}}:\left\{\begin{array}{l}
X_{2} \rightarrow Y \\
x \mapsto f\left(x_{1}, x\right)
\end{array}\right.\right.
$$

are continuous.
(b) Let $X_{1}=X_{2}=\mathbf{R}$ and define $f: X \rightarrow \mathbf{R}$ by

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}\frac{x_{1} x_{2}}{x_{1}^{2}+x_{2}^{2}}, & \text { if }\left(x_{1}, x_{2}\right) \neq(0,0) \\ 0 & \text { if }\left(x_{1}, x_{2}\right)=(0,0)\end{cases}
$$

Show that $f_{x_{2}}$ and $g_{x_{1}}$ are all continuous but that f is not continuous.
Let $X_{1}=X_{2}=Y=\mathbf{R}$. Assume that the functions $f_{x_{2}}$ and $g_{x_{1}}$ are continuous for all $\left(x_{1}, x_{2}\right) \in \mathbf{R}^{2}$. Let $\left(x_{1}, x_{2}\right) \in \mathbf{R}^{2}$ and $y=f\left(x_{1}, x_{2}\right)$.
(c) For $\varepsilon>0$, show that there exist $y_{1}<y_{2}$ in \mathbf{R} with $y_{1}<x_{2}<y_{2}$ such that $y-\varepsilon<f\left(x_{1}, x\right)<y+\varepsilon$ if $y_{1}<x<y_{2}$.
(d) Let $v_{1}<v_{2}$ be such that $y_{1}<v_{1}<x_{2}<v_{2}<y_{2}$. Show that there exists $\delta>0$ such that

$$
\begin{aligned}
& y-\varepsilon<f\left(x, v_{1}\right)<y+\varepsilon \\
& y-\varepsilon<f\left(x, v_{2}\right)<y+\varepsilon
\end{aligned}
$$

for $x_{1}-\delta<x<x_{1}+\delta$.
(e) Assume furthermore that $g_{x_{1}}: \mathbf{R} \rightarrow \mathbf{R}$ is non-decreasing for all $x_{1} \in \mathbf{R}$. Deduce that f is continuous.

