TOPOLOGY SPRING 2024
 SERIE 9

In these exercises, we use the following notion: a map $f: X \rightarrow Y$ between two topological spaces is called open if $f(U)$ is open in Y for all open subsets U of X.
(1) For $z \in \mathbf{C}$ and $r \geq 0$, we denote by $C(z, r)$ the circle centered at z of radius r in \mathbf{C}, i.e. $C(z, r)=\{w \in \mathbf{C}| | w-z \mid=r\}$.

Let $X=[0,2] \subset \mathbf{R}$ and $Y=C(i, 1) \cup C(-i, 1)$.
(a) Show that the map $\varphi: X \rightarrow Y$ such that

$$
\varphi(t)= \begin{cases}i+e^{2 i \pi(t-1 / 4)} & \text { if } 0 \leq t \leq 1 \\ -i+e^{2 i \pi(t-3 / 4)} & \text { if } 1 \leq t \leq 2\end{cases}
$$

is well-defined, and that it is continuous.
(b) Define an equivalence relation on X with equivalence classes $\{0,1,2\}$ and $\{t\}$ for $t \in X \backslash\{0,1,2\}$. Let $X^{\prime}=X / \sim$ and $p: X \rightarrow X^{\prime}$ the projection. Show that there is a continuous map $\widetilde{\varphi}: X^{\prime} \rightarrow Y$ such that $\widetilde{\varphi} \circ p=\varphi$, and that $\widetilde{\varphi}$ is continuous when X^{\prime} has the quotient topology.
(c) Show that $\widetilde{\varphi}$ is a homeomorphism.
(2) Let X and Y be topological spaces with equivalence relations \sim_{X} and \sim_{Y} on X and Y respectively. Let $Z=X \times Y$ with the product topology. On Z, let \sim be the equivalence relation defined by

$$
\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \quad \text { if and only if } \quad\left(x_{1} \sim_{X} x_{2} \text { and } y_{1} \sim_{Y} y_{2}\right)
$$

Let

$$
X^{\prime}=X / \sim_{X}, \quad Y^{\prime}=Y / \sim_{Y}, \quad Z^{\prime}=Z / \sim
$$

denote the respective quotients. Each is given the quotient topology. Let finally p_{X}, p_{Y} and p denote the projections

$$
p_{X}: X \rightarrow X^{\prime}, \quad p_{Y}: Y \rightarrow Y^{\prime}, \quad p: Z \rightarrow Z^{\prime}
$$

(a) Show that there is a bijection

$$
\varphi: Z^{\prime} \rightarrow X^{\prime} \times Y^{\prime}
$$

such that the class of (x, y) is mapped to $\left(p_{X}(x), p_{Y}(y)\right)$, and that φ is continuous when $X^{\prime} \times Y^{\prime}$ has the product topology.
(b) Suppose that p_{X} and p_{Y} are open maps. Show that $\varphi(p(W))$ is open in $X^{\prime} \times Y^{\prime}$ for all $W \subset Z$ open.
(c) Deduce that φ is an homeomorphism in that case.
(3) Let X be a topological space and \sim an equivalence relation on X. Let $X^{\prime}=X / \sim$ and $p: X \rightarrow X^{\prime}$ the projection. Let

$$
\Gamma=\{(x, y) \in \underset{1}{X} \times X \mid x \sim y\}
$$

be the graph of the equivalence relation. Define the relation \equiv on $X \times X$ by

$$
(x, y) \equiv\left(x^{\prime}, y^{\prime}\right) \quad \text { if and only if } \quad x \sim x^{\prime} \text { and } y \sim y^{\prime}
$$

(a) Show that $\Gamma=q^{-1}(q(\Delta))$ where

$$
\Delta=\{(x, x) \in X \times X \mid x \in X\}
$$

is the diagonal in $X \times X$ and $q: X \times X \rightarrow(X \times X) / \equiv$ is the projection.
(b) If the map p is open and Γ is closed in $X \times X$, show that the diagonal

$$
\Delta^{\prime}=\left\{(x, x) \in X^{\prime} \times X^{\prime} \mid x \in X^{\prime}\right\}
$$

is closed in $X^{\prime} \times X^{\prime}$ for the product topology. (Hint: use the previous exercise.)
(c) Deduce that the space X^{\prime} is then Hausdorff. (Hint: use Exercise 3 of Exercise sheet 4).
(4) We use the setting and notation of Exercise 2, with $X=Y=\mathbf{R}$ (with the euclidean topology), and let \sim_{X} be the equality relation, \sim_{Y} the relation where the equivalence class of 0 is \mathbf{Z} while the equivalence class of any $x \notin \mathbf{Z}$ is $\{x\}$.
(a) Show that p_{X} is open.
(b) Show that if $A \subset Y$ is any subset, then

$$
p_{Y}^{-1}\left(p_{Y}(A)\right)= \begin{cases}A & \text { if } A \cap \mathbf{Z}=\emptyset \\ \mathbf{Z} \cup A & \text { otherwise }\end{cases}
$$

(c) Deduce that p_{Y} is not an open map. Show however that $p_{Y}(C)$ is closed if C is closed.
(d) Show that a fundamental system of neighborhoods of $\left(p_{X}(0), p_{Y}(0)\right)$ in $X^{\prime} \times Y^{\prime}$ is given by the sets of the form

$$
p_{X}(]-\delta, \delta[) \times p_{Y}\left(\bigcup_{n \in \mathbf{Z}}\right] n-\varepsilon_{n}, n+\varepsilon_{n}[)
$$

where $\delta>0$ and $\varepsilon_{n}>0$, for $n \in \mathbf{Z}$, are arbitrary positive real numbers.
(e) Show that a fundamental system of neighborhoods of $p(0,0)$ in Z^{\prime} is given by the sets of the form

$$
p\left(\bigcup_{n \in \mathbf{Z}}\right]-\delta_{n}, \delta_{n}[\times] n-\varepsilon_{n}, n+\varepsilon_{n}[)
$$

where $\delta_{n}>0$ and $\varepsilon_{n}>0$, for $n \in \mathbf{Z}$, are arbitrary positive real numbers.
(f) Deduce $\varphi: Z^{\prime} \rightarrow X^{\prime} \times Y^{\prime}$ is not a homeomorphism.
(g) Can you get some intuitive feeling for the "shape" of Y^{\prime} ? for that of Z^{\prime} ?
(5) Let $n \geq 1$ and $k \leq n$ be non-negative integers. Let $H_{k} \subset \mathbf{R}^{n}$ be the subgroup, isomorphic to \mathbf{Z}^{k}, generated by the first k vectors of the canonical basis of \mathbf{R}^{n}. Let $X_{n, k}=\mathbf{R}^{n} / H_{k}$, with the corresponding quotient topology (where H_{k} has the subspace topology, which is discrete). Let $p: \mathbf{R}^{n} \rightarrow X_{n, k}$ be the canonical projection.
(a) Show that p is open and that the graph of the equivalence relation is closed. Deduce that $X_{n, k}$ is a Hausdorff space. (Hint: use the criterion of Exercise 3.)
(b) Let $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}$. Show that

$$
C=\left\{\left(t_{1}, \ldots, t_{n}\right) \in \mathbf{R}^{n}| | t_{i}-x_{i} \left\lvert\, \leq \frac{1}{4}\right. \text { for } 1 \leq i \leq n\right\}
$$

is a compact neighborhood of x such that the restriction of p to C is injective.
(c) Deduce that $X_{n, k}$ is a topological manifold.
(d) Construct an homeomorphism $X_{n, k} \rightarrow\left(\mathbf{S}_{1}\right)^{k} \times \mathbf{R}^{n-k}$. (Hint: Exercise 2 can be useful.)

