TOPOLOGY SPRING 2024 SERIE 9

In these exercises, we use the following notion: a map $f: X \to Y$ between two topological spaces is called *open* if f(U) is open in Y for all open subsets U of X.

(1) For $z \in \mathbf{C}$ and $r \ge 0$, we denote by C(z, r) the circle centered at z of radius r in \mathbf{C} , i.e. $C(z, r) = \{w \in \mathbf{C} \mid |w - z| = r\}.$

Let $X = [0, 2] \subset \mathbf{R}$ and $Y = C(i, 1) \cup C(-i, 1)$.

(a) Show that the map $\varphi \colon X \to Y$ such that

$$\varphi(t) = \begin{cases} i + e^{2i\pi(t-1/4)} & \text{if } 0 \le t \le 1\\ -i + e^{2i\pi(t-3/4)} & \text{if } 1 \le t \le 2 \end{cases}$$

is well-defined, and that it is continuous.

- (b) Define an equivalence relation on X with equivalence classes $\{0, 1, 2\}$ and $\{t\}$ for $t \in X \setminus \{0, 1, 2\}$. Let $X' = X/ \sim$ and $p: X \to X'$ the projection. Show that there is a continuous map $\tilde{\varphi}: X' \to Y$ such that $\tilde{\varphi} \circ p = \varphi$, and that $\tilde{\varphi}$ is continuous when X' has the quotient topology.
- (c) Show that $\tilde{\varphi}$ is a homeomorphism.
- (2) Let X and Y be topological spaces with equivalence relations \sim_X and \sim_Y on X and Y respectively. Let $Z = X \times Y$ with the product topology. On Z, let \sim be the equivalence relation defined by

 $(x_1, y_1) \sim (x_2, y_2)$ if and only if $(x_1 \sim_X x_2 \text{ and } y_1 \sim_Y y_2)$.

Let

$$X' = X/\sim_X, \quad Y' = Y/\sim_Y, \quad Z' = Z/\sim$$

denote the respective quotients. Each is given the quotient topology. Let finally p_X , p_Y and p denote the projections

$$p_X \colon X \to X', \quad p_Y \colon Y \to Y', \quad p \colon Z \to Z'.$$

(a) Show that there is a bijection

$$\varphi\colon Z'\to X'\times Y'$$

such that the class of (x, y) is mapped to $(p_X(x), p_Y(y))$, and that φ is continuous when $X' \times Y'$ has the product topology.

- (b) Suppose that p_X and p_Y are open maps. Show that $\varphi(p(W))$ is open in $X' \times Y'$ for all $W \subset Z$ open.
- (c) Deduce that φ is an homeomorphism in that case.
- (3) Let X be a topological space and ~ an equivalence relation on X. Let $X' = X/\sim$ and $p: X \to X'$ the projection. Let

$$\Gamma = \{(x, y) \in X \times X \mid x \sim y\}$$

be the graph of the equivalence relation. Define the relation \equiv on $X \times X$ by

 $(x, y) \equiv (x', y')$ if and only if $x \sim x'$ and $y \sim y'$.

(a) Show that $\Gamma = q^{-1}(q(\Delta))$ where

$$\Delta = \{ (x, x) \in X \times X \mid x \in X \}$$

is the diagonal in $X \times X$ and $q: X \times X \to (X \times X) / \equiv$ is the projection.

(b) If the map p is open and Γ is closed in $X \times X$, show that the diagonal

$$\Delta' = \{ (x, x) \in X' \times X' \mid x \in X' \}$$

is closed in $X' \times X'$ for the product topology. (Hint: use the previous exercise.)

- (c) Deduce that the space X' is then Hausdorff. (Hint: use Exercise 3 of Exercise sheet 4).
- (4) We use the setting and notation of Exercise 2, with $X = Y = \mathbf{R}$ (with the euclidean topology), and let \sim_X be the equality relation, \sim_Y the relation where the equivalence class of 0 is \mathbf{Z} while the equivalence class of any $x \notin \mathbf{Z}$ is $\{x\}$.
 - (a) Show that p_X is open.
 - (b) Show that if $A \subset Y$ is any subset, then

$$p_Y^{-1}(p_Y(A)) = \begin{cases} A & \text{if } A \cap \mathbf{Z} = \emptyset \\ \mathbf{Z} \cup A & \text{otherwise.} \end{cases}$$

- (c) Deduce that p_Y is not an open map. Show however that $p_Y(C)$ is closed if C is closed.
- (d) Show that a fundamental system of neighborhoods of $(p_X(0), p_Y(0))$ in $X' \times Y'$ is given by the sets of the form

$$p_X(]-\delta,\delta[) \times p_Y\left(\bigcup_{n\in\mathbf{Z}}]n-\varepsilon_n, n+\varepsilon_n[\right)$$

where $\delta > 0$ and $\varepsilon_n > 0$, for $n \in \mathbb{Z}$, are arbitrary positive real numbers.

(e) Show that a fundamental system of neighborhoods of p(0,0) in Z' is given by the sets of the form

$$p\left(\bigcup_{n\in\mathbf{Z}}]-\delta_n,\delta_n[\times]n-\varepsilon_n,n+\varepsilon_n[\right)$$

where $\delta_n > 0$ and $\varepsilon_n > 0$, for $n \in \mathbb{Z}$, are arbitrary positive real numbers.

- (f) Deduce $\varphi: Z' \to X' \times Y'$ is not a homeomorphism.
- (g) Can you get some intuitive feeling for the "shape" of Y'? for that of Z'?
- (5) Let $n \ge 1$ and $k \le n$ be non-negative integers. Let $H_k \subset \mathbf{R}^n$ be the subgroup, isomorphic to \mathbf{Z}^k , generated by the first k vectors of the canonical basis of \mathbf{R}^n . Let $X_{n,k} = \mathbf{R}^n/H_k$, with the corresponding quotient topology (where H_k has the subspace topology, which is discrete). Let $p: \mathbf{R}^n \to X_{n,k}$ be the canonical projection.
 - (a) Show that p is open and that the graph of the equivalence relation is closed. Deduce that $X_{n,k}$ is a Hausdorff space. (Hint: use the criterion of Exercise 3.)

(b) Let $x = (x_1, \ldots, x_n) \in \mathbf{R}^n$. Show that

$$C = \{ (t_1, \dots, t_n) \in \mathbf{R}^n \mid |t_i - x_i| \le \frac{1}{4} \text{ for } 1 \le i \le n \}$$

is a compact neighborhood of x such that the restriction of p to C is injective.

- (c) Deduce that $X_{n,k}$ is a topological manifold. (d) Construct an homeomorphism $X_{n,k} \to (\mathbf{S}_1)^k \times \mathbf{R}^{n-k}$. (Hint: Exercise 2 can be useful.)