TOPOLOGY SPRING 2024
SOLUTIONS SERIE 1

(1) (a) Let us verify the definition of topology:
e the empty set belongs to Z.¢ by definition, and X belongs to it as
X\ X =0 is finite;

e let {U;}icr be a collection of sets in ¢, and let U = Uiel U; be their
union. Let WLOG U # () as we already know it belongs to Z..;. Then I
is nonempty and there is i € I such that U; # @), but then X \U C X \U;
and X \ U; is finite, so X \ U is finite and hence U € Fu;

e let {U;}ier be a collection of sets in Zo¢ with I finite and nonempty. If
one of the U; is empty we are done as V := (.., U; = 0. Otherwise,
X\V = U,e;(X\ U;) is a finite union of finite sets, and therefore a
finite set, so V € T

(b) This is true precisely when X is finite: indeed, since X itself belongs to the
topology, it must be a finite set. Conversely, for finite X, the set of its finite
subsets is just its power set, that is, the discrete topology on X.

(2) (a) 0 and X are respectively the preimage of () and Y and therefore belong to 7.
Moreover, since for any arbitrary collection {V;};c; of subsets of Y (and any
f: X —Y) the following equalities hold:

Puv)-Uron () -nees

it immediately follows that .7 satisfies the remaining two axioms of a topol-
ogy: for instance, if {U;}icr is a collection of elements of .7, then there exist
a collection {V;};c; of open subsets of Y such that U; = f~(V;); hence,
Uit Ui = Ui, F71V) = (Ui Vi) =: f7H(V) is indeed the preimage of
an open subset V of Y. The proof for the intersection property is identical,
using the second equality.

(b) This is immediate from the definition of 7: if V' C Y is open, then f~1(V) €
T, so [ is continuous. Indeed, it is clear that any topology that makes f
continuous must contain .7, and we say that .7 is the coarsest topology that
makes f continuous.

(3) (a) If U is open then U N U; is open for all i as it is the intersection of two open
sets; moreover, since the Uss cover X we have U = (J,.,(U NUj;), so if each of
the intersections is open then so is U as the union of open sets;

(b) let fi := f|y, and let V C Y be open. Since f is continuous, then f; (V) =
F~YV) N U; is the intersection of an open set of X with U; and therefore an

open set of U; with the subspace topology, so f; is continuous;
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given V as above, let U = f~1(V). The fact that the f;s are continuous tells
us that U; N U = f[l(V) is open in the subspace topology of U;, i.e. there
exists V; C X open such that U; " U = U; N'V;, but this last set is open in X
as the intersection of two open sets, so U; NU is open for all 7 and we conclude
that U itself is open by point a), so f is continuous;

let X =Y = {0,1} with the discrete topology, I = {0,1}, U; = {i}, and
let f be the identity. Then clearly {Uy,U;} is an open cover of X and f is
constant on each U;, but f is not constant;

given z € X, the last hypothesis allows us to unambiguously define f(x) :=
fi(z) for any i € I such that = € U; (and such an i must exist by the covering
condition), and moreover this is the only function that coincides with f; on
U; for all i (two such function must differ on some y € X, but then there
exists j € I such that y € U;, so one of the two functions differs with f; at y).
Therefore, we just need to prove that such f is continuous: by construction,
for all + we have f|y, = f;, and the f;s are continuous by hypothesis, so we
are done thanks to point c).

As z # y, we have d := d(z,y) > 0. Let U := {z € X : d(x,z2) < g} and
Vi={z€ X :d(y,z) < 4}, i.e. the so-called open balls of radius ¢ centred
at x and y respectively. These are indeed open: fix z € U (WLOG); then
d(z,2) < £ = 3¢ > 0:d(z,2) < % — € and hence all points w € X with
d(w,z) < € are in U, as for such w we have d(z,w) < d(z,z) + d(z,w) <
(%’ —€)+e= %l. The triangle inequality also shows that U NV = (): if we had
zeUNV, then d=d(z,y) <d(z,z)+d(z,y) < g + %l = d, which is absurd;

it clearly is enough to show that any two nonempty open sets U,V intersect
each other: if that was not the case we would have U C X \ V = U is finite
as it is a subset of a finite set. But then, since X \ U is also finite, X =
U U (X \ U) would also be finite as the union of two finite sets, contradicting
the hypotheses.

The first set is open, as it its open also in R. Its complement A = {—1,1} U
[—%, %] C X is not open, as any open set U C R that contains 1 also contains
1 — € for some 0 < € < %, so its intersection with X cannot be A. Therefore,

the first set is not closed.

The second set is open, as it is U N X with U = (—oo0, —%) U (%, o0) open in
R, but it is not closed, as its complement [—%, %] C X cannot be written as

U N X for an open set U C R as such U would contain % and therefore % +e€
for some € > 0.

The third set is not open as any open set of R containing % also contains % —€
for some 0 < € < 1. It is also not closed for the exact same reason that the
first set is not closed.

The fourth set is not open for the exact same reason that the third is not
open, but it is closed as its complement (—%, %) in X is open as a subset of

R.



TOPOLOGY SPRING 2024 SOLUTIONS SERIE 1 3

Note. With a bit more theory we could have avoided checking for closedness for
the first two subsets: you will see that X 1s a connected topological space, which
implies that a nonempty proper subset cannot be both open and closed.



