TOPOLOGY SPRING 2024

SOLUTIONS SERIE 1

(1) (a) Let us verify the definition of topology:

- the empty set belongs to $\mathscr{T}_{\text {cof }}$ by definition, and X belongs to it as $X \backslash X=\emptyset$ is finite;
- let $\left\{U_{i}\right\}_{i \in I}$ be a collection of sets in $\mathscr{T}_{\text {cof }}$, and let $U=\bigcup_{i \in I} U_{i}$ be their union. Let WLOG $U \neq \emptyset$ as we already know it belongs to $\mathscr{T}_{\text {cof }}$. Then I is nonempty and there is $i \in I$ such that $U_{i} \neq \emptyset$, but then $X \backslash U \subset X \backslash U_{i}$ and $X \backslash U_{i}$ is finite, so $X \backslash U$ is finite and hence $U \in \mathscr{T}_{\text {cof }}$;
- let $\left\{U_{i}\right\}_{i \in I}$ be a collection of sets in $\mathscr{T}_{\text {cof }}$ with I finite and nonempty. If one of the U_{i} is empty we are done as $V:=\bigcap_{i \in I} U_{i}=\emptyset$. Otherwise, $X \backslash V=\bigcup_{i \in I}\left(X \backslash U_{i}\right)$ is a finite union of finite sets, and therefore a finite set, so $V \in \mathscr{T}_{\text {cof }}$.
(b) This is true precisely when X is finite: indeed, since X itself belongs to the topology, it must be a finite set. Conversely, for finite X, the set of its finite subsets is just its power set, that is, the discrete topology on X.
(2) (a) \emptyset and X are respectively the preimage of \emptyset and Y and therefore belong to \mathscr{T}. Moreover, since for any arbitrary collection $\left\{V_{i}\right\}_{i \in I}$ of subsets of Y (and any $f: X \longrightarrow Y)$ the following equalities hold:

$$
f^{-1}\left(\bigcup_{i \in I} V_{i}\right)=\bigcup_{i \in I} f^{-1}\left(V_{i}\right), \quad f^{-1}\left(\bigcap_{i \in I} V_{i}\right)=\bigcap_{i \in I} f^{-1}\left(V_{i}\right)
$$

it immediately follows that \mathscr{T} satisfies the remaining two axioms of a topology: for instance, if $\left\{U_{i}\right\}_{i \in I}$ is a collection of elements of \mathscr{T}, then there exist a collection $\left\{V_{i}\right\}_{i \in I}$ of open subsets of Y such that $U_{i}=f^{-1}\left(V_{i}\right)$; hence, $\bigcup_{i \in I} U_{i}=\bigcup_{i \in I} f^{-1}\left(V_{i}\right)=f^{-1}\left(\bigcup_{i \in I} V_{i}\right)=: f^{-1}(V)$ is indeed the preimage of an open subset V of Y. The proof for the intersection property is identical, using the second equality.
(b) This is immediate from the definition of \mathscr{T} : if $V \subset Y$ is open, then $f^{-1}(V) \in$ \mathscr{T}, so f is continuous. Indeed, it is clear that any topology that makes f continuous must contain \mathscr{T}, and we say that \mathscr{T} is the coarsest topology that makes f continuous.
(3) (a) If U is open then $U \cap U_{i}$ is open for all i as it is the intersection of two open sets; moreover, since the U_{i} s cover X we have $U=\bigcup_{i \in I}\left(U \cap U_{i}\right)$, so if each of the intersections is open then so is U as the union of open sets;
(b) let $f_{i}:=\left.f\right|_{U_{i}}$ and let $V \subset Y$ be open. Since f is continuous, then $f_{i}^{-1}(V)=$ $f^{-1}(V) \cap U_{i}$ is the intersection of an open set of X with U_{i} and therefore an open set of U_{i} with the subspace topology, so f_{i} is continuous;
(c) given V as above, let $U=f^{-1}(V)$. The fact that the f_{i} s are continuous tells us that $U_{i} \cap U=f_{i}^{-1}(V)$ is open in the subspace topology of U_{i}, i.e. there exists $V_{i} \subset X$ open such that $U_{i} \cap U=U_{i} \cap V_{i}$, but this last set is open in X as the intersection of two open sets, so $U_{i} \cap U$ is open for all i and we conclude that U itself is open by point a), so f is continuous;
(d) let $X=Y=\{0,1\}$ with the discrete topology, $I=\{0,1\}, U_{i}=\{i\}$, and let f be the identity. Then clearly $\left\{U_{0}, U_{1}\right\}$ is an open cover of X and f is constant on each U_{i}, but f is not constant;
(e) given $x \in X$, the last hypothesis allows us to unambiguously define $f(x):=$ $f_{i}(x)$ for any $i \in I$ such that $x \in U_{i}$ (and such an i must exist by the covering condition), and moreover this is the only function that coincides with f_{i} on U_{i} for all i (two such function must differ on some $y \in X$, but then there exists $j \in I$ such that $y \in U_{j}$, so one of the two functions differs with f_{j} at y). Therefore, we just need to prove that such f is continuous: by construction, for all i we have $\left.f\right|_{U_{i}}=f_{i}$, and the $f_{i} \mathrm{~s}$ are continuous by hypothesis, so we are done thanks to point c).
(a) As $x \neq y$, we have $d:=d(x, y)>0$. Let $U:=\left\{z \in X: d(x, z)<\frac{d}{2}\right\}$ and $V:=\left\{z \in X: d(y, z)<\frac{d}{2}\right\}$, i.e. the so-called open balls of radius $\frac{d}{2}$ centred at x and y respectively. These are indeed open: fix $z \in U$ (WLOG); then $d(x, z)<\frac{d}{2} \Longrightarrow \exists \epsilon>0: d(x, z) \leq \frac{d}{2}-\epsilon$ and hence all points $w \in X$ with $d(w, z)<\epsilon$ are in U, as for such w we have $d(x, w) \leq d(x, z)+d(z, w)<$ $\left(\frac{d}{2}-\epsilon\right)+\epsilon=\frac{d}{2}$. The triangle inequality also shows that $U \cap V=\emptyset$: if we had $z \in U \cap V$, then $d=d(x, y) \leq d(x, z)+d(z, y)<\frac{d}{2}+\frac{d}{2}=d$, which is absurd;
(b) it clearly is enough to show that any two nonempty open sets U, V intersect each other: if that was not the case we would have $U \subset X \backslash V \Longrightarrow U$ is finite as it is a subset of a finite set. But then, since $X \backslash U$ is also finite, $X=$ $U \cup(X \backslash U)$ would also be finite as the union of two finite sets, contradicting the hypotheses.

- The first set is open, as it its open also in \mathbf{R}. Its complement $A=\{-1,1\} \cup$ $\left[-\frac{1}{2}, \frac{1}{2}\right] \subset X$ is not open, as any open set $U \subset \mathbf{R}$ that contains 1 also contains $1-\epsilon$ for some $0<\epsilon<\frac{1}{2}$, so its intersection with X cannot be A. Therefore, the first set is not closed.
- The second set is open, as it is $U \cap X$ with $U=\left(-\infty,-\frac{1}{2}\right) \cup\left(\frac{1}{2}, \infty\right)$ open in \mathbf{R}, but it is not closed, as its complement $\left[-\frac{1}{2}, \frac{1}{2}\right] \subset X$ cannot be written as $U \cap X$ for an open set $U \subset \mathbf{R}$ as such U would contain $\frac{1}{2}$ and therefore $\frac{1}{2}+\epsilon$ for some $\epsilon>0$.
- The third set is not open as any open set of \mathbf{R} containing $\frac{1}{2}$ also contains $\frac{1}{2}-\epsilon$ for some $0<\epsilon<1$. It is also not closed for the exact same reason that the first set is not closed.
- The fourth set is not open for the exact same reason that the third is not open, but it is closed as its complement $\left(-\frac{1}{2}, \frac{1}{2}\right)$ in X is open as a subset of R.

Note. With a bit more theory we could have avoided checking for closedness for the first two subsets: you will see that X is a connected topological space, which implies that a nonempty proper subset cannot be both open and closed.

