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(1) (a) Let us verify the definition of topology:
• the empty set belongs to Tcof by definition, and X belongs to it as
X \X = ∅ is finite;

• let {Ui}i∈I be a collection of sets in Tcof, and let U =
⋃

i∈I Ui be their
union. Let WLOG U ̸= ∅ as we already know it belongs to Tcof. Then I
is nonempty and there is i ∈ I such that Ui ̸= ∅, but then X\U ⊂ X\Ui

and X \ Ui is finite, so X \ U is finite and hence U ∈ Tcof;

• let {Ui}i∈I be a collection of sets in Tcof with I finite and nonempty. If
one of the Ui is empty we are done as V :=

⋂
i∈I Ui = ∅. Otherwise,

X \ V =
⋃

i∈I(X \ Ui) is a finite union of finite sets, and therefore a
finite set, so V ∈ Tcof.

(b) This is true precisely when X is finite: indeed, since X itself belongs to the
topology, it must be a finite set. Conversely, for finite X, the set of its finite
subsets is just its power set, that is, the discrete topology on X.

(2) (a) ∅ and X are respectively the preimage of ∅ and Y and therefore belong to T .
Moreover, since for any arbitrary collection {Vi}i∈I of subsets of Y (and any
f : X −→ Y ) the following equalities hold:

f−1

(⋃
i∈I

Vi

)
=
⋃
i∈I

f−1(Vi), f−1

(⋂
i∈I

Vi

)
=
⋂
i∈I

f−1(Vi)

it immediately follows that T satisfies the remaining two axioms of a topol-
ogy: for instance, if {Ui}i∈I is a collection of elements of T , then there exist
a collection {Vi}i∈I of open subsets of Y such that Ui = f−1(Vi); hence,⋃

i∈I Ui =
⋃

i∈I f
−1(Vi) = f−1(

⋃
i∈I Vi) =: f−1(V ) is indeed the preimage of

an open subset V of Y . The proof for the intersection property is identical,
using the second equality.

(b) This is immediate from the definition of T : if V ⊂ Y is open, then f−1(V ) ∈
T , so f is continuous. Indeed, it is clear that any topology that makes f
continuous must contain T , and we say that T is the coarsest topology that
makes f continuous.

(3) (a) If U is open then U ∩ Ui is open for all i as it is the intersection of two open
sets; moreover, since the Uis cover X we have U =

⋃
i∈I(U ∩Ui), so if each of

the intersections is open then so is U as the union of open sets;

(b) let fi := f |Ui
and let V ⊂ Y be open. Since f is continuous, then f−1

i (V ) =
f−1(V ) ∩ Ui is the intersection of an open set of X with Ui and therefore an
open set of Ui with the subspace topology, so fi is continuous;
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(c) given V as above, let U = f−1(V ). The fact that the fis are continuous tells
us that Ui ∩ U = f−1

i (V ) is open in the subspace topology of Ui, i.e. there
exists Vi ⊂ X open such that Ui ∩ U = Ui ∩ Vi, but this last set is open in X
as the intersection of two open sets, so Ui∩U is open for all i and we conclude
that U itself is open by point a), so f is continuous;

(d) let X = Y = {0, 1} with the discrete topology, I = {0, 1}, Ui = {i}, and
let f be the identity. Then clearly {U0, U1} is an open cover of X and f is
constant on each Ui, but f is not constant;

(e) given x ∈ X, the last hypothesis allows us to unambiguously define f(x) :=
fi(x) for any i ∈ I such that x ∈ Ui (and such an i must exist by the covering
condition), and moreover this is the only function that coincides with fi on
Ui for all i (two such function must differ on some y ∈ X, but then there
exists j ∈ I such that y ∈ Uj, so one of the two functions differs with fj at y).
Therefore, we just need to prove that such f is continuous: by construction,
for all i we have f |Ui

= fi, and the fis are continuous by hypothesis, so we
are done thanks to point c).

(4) (a) As x ̸= y, we have d := d(x, y) > 0. Let U := {z ∈ X : d(x, z) < d
2
} and

V := {z ∈ X : d(y, z) < d
2
}, i.e. the so-called open balls of radius d

2
centred

at x and y respectively. These are indeed open: fix z ∈ U (WLOG); then
d(x, z) < d

2
=⇒ ∃ϵ > 0 : d(x, z) ≤ d

2
− ϵ and hence all points w ∈ X with

d(w, z) < ϵ are in U , as for such w we have d(x,w) ≤ d(x, z) + d(z, w) <
(d
2
− ϵ) + ϵ = d

2
. The triangle inequality also shows that U ∩ V = ∅: if we had

z ∈ U ∩ V, then d = d(x, y) ≤ d(x, z) + d(z, y) < d
2
+ d

2
= d, which is absurd;

(b) it clearly is enough to show that any two nonempty open sets U, V intersect
each other: if that was not the case we would have U ⊂ X \V =⇒ U is finite
as it is a subset of a finite set. But then, since X \ U is also finite, X =
U ∪ (X \U) would also be finite as the union of two finite sets, contradicting
the hypotheses.

(5) • The first set is open, as it its open also in R. Its complement A = {−1, 1} ∪
[−1

2
, 1
2
] ⊂ X is not open, as any open set U ⊂ R that contains 1 also contains

1− ϵ for some 0 < ϵ < 1
2
, so its intersection with X cannot be A. Therefore,

the first set is not closed.
• The second set is open, as it is U ∩X with U = (−∞,−1

2
) ∪ (1

2
,∞) open in

R, but it is not closed, as its complement [−1
2
, 1
2
] ⊂ X cannot be written as

U ∩X for an open set U ⊂ R as such U would contain 1
2
and therefore 1

2
+ ϵ

for some ϵ > 0.
• The third set is not open as any open set of R containing 1

2
also contains 1

2
−ϵ

for some 0 < ϵ < 1. It is also not closed for the exact same reason that the
first set is not closed.

• The fourth set is not open for the exact same reason that the third is not
open, but it is closed as its complement (−1

2
, 1
2
) in X is open as a subset of

R.
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Note. With a bit more theory we could have avoided checking for closedness for
the first two subsets: you will see that X is a connected topological space, which
implies that a nonempty proper subset cannot be both open and closed.


