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(1) (a) as T ∗ is defined from a basis, it suffices to check that the latter is closed
under finite intersections (as clearly R ∈ B1 and ∅ is obtained by a empty
union), i.e. that both B1 and B2 are. We know it for B1 as it is a basis for
the euclidean topology; the same is true for B2 as the intersection of two of
its elements is the intersection of two elements of B1 minus the set B, i.e. an
element of B1 minus B, so an element of B2.
As the euclidean topology, generated by B1, is Hausdorff, and T ∗ is finer
than that, it is also Hausdorff;

(b) A is closed in the euclidean topology and so it is in T ∗, while R \ B is
(−∞, 0) ∪ ((−1, 1) \ B) ∪ (1,∞), with the second set belonging to B2 and
the first and third to the euclidean topology, and hence to T ∗; therefore, B
is closed;

(c) as U ∈ T ∗, there are euclidean open intervals Ui, i ∈ I in R such that
U = (

⋃
I Ui) ∩ T with either T = R or T = R \ B. As 0 ∈ U , there is i ∈ I

such that 0 ∈ Ui, which implies the claim;

(d) it suffices to take n > b−1;

(e) 1/n ∈ V as B ⊂ V ; hence, the same argument as for a, b gives c′ < 1/n < d′

so that (c′, d′) \B ⊂ V . Therefore, setting c = max(c′, 1
n+1

), d = min(d′, 1
n−1

)
gives (c, d) ⊂ V ;

(f) as c < 1/n and c ≥ 1
n+1

, any x ∈ (c, 1/n) works;

(g) we have x ∈ V by e) and f). As also x /∈ B and 0 < x < 1/n by f), we get
x ∈ U by c) as 1/n < b by d);

(h) B is a closed set not containing 0, but we just proved that any two opens
U, V containing 0 and B respectively must intersect, so R with the topology
T ∗ is not regular, and hence not normal.

(2) (a) If ϕ(x) = ϕ(y) then for any continuous f : X −→ [0, 1] we have f(x) = f(y),
which implies x = y as the normality of X guarantees that we can otherwise
find such f with f(x) = 0, f(y) = 1;

(b) we verify this on the cofinite basis as usual: the preimage of some of open in
it is {x ∈ X : f1(x) ∈ U1, ..., fn(x) ∈ Un} for some fi’s in F and Ui ⊂ [0, 1].
But this is just the intersection of the f−1

i (Ui), which is open;

(c) such a FSN is given by the intersection of a FSN for y in the product space
with Y . The former is given, in virtue of the definition of product topology,
(for example) by the usual cofinite neighborhoods {w ∈

∏
F Xf : |wfj −yfj | <

ϵj} for all j ∈ J , as J and the ϵj’s vary as in the text of the exercise. As we
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intersect with ϕ(X) we have w = ϕ(z) for some z ∈ X, so that wfj = fj(z)
by definition, from which the claim follows;

(d) the existence of such V is granted by the ”3bis” of the equivalent definitions
of normality we saw, applied to {x0} and U c. The existence of the map is
implied by the first of the equivalent definitions, that gives us a map such
that g(U c) = 0 (and g(x0) = 1);

(e) we just need to show that ϕ : X −→ Y is open: let y = ϕ(x0) ∈ ϕ(U) for some
U ⊂ X open, we need to show that ϕ(U) contains some set as those defined
in point c). Then taking g as in the previous point we have yg = g(x0) = 1
and {|g(x)− g(x0)| < 1/2} ⊂ U , so we are done;

(f) as
∏

F Xf is compact by Tychonoff’s Theorem, we are done by the previous
point.

(3) (a) Let us prove the base step j = 1: we have that the complement C1 of U2 ∪
...∪Uk is a closed set contained in U1 (as the Ui’s form a covering). Therefore,
C1 ∩U c

1 = ∅, and, as X is normal, there are disjoint open sets V1 ⊃ C1, Z1 ⊃
U c
1 , which means precisely that V1 ⊂ U1. As C1 ⊂ V1, the latter satisfies

the required condition. The inductive step is the same of the base step: we
start from on open covering and we replace one of the sets, which the above
argument shows that we can choose arbitrarily, with a smaller open whose
closure is contained in the previous one. Doing it k times on the Ui’s, we are
done;

(b) first, we can extract Wi from Vi as we did Vi from Ui preserving the covering
condition. As X is normal and Wi ⊂ Vi, we know that there are functions
gi : X −→ [0, 1] such that gi(Wi) = 1 and gi(X \ Vi) = 0, so we are done;

(c) as gi(X \ Vi) = 0 and Vi ⊂ Ui we have Supp(gi) ⊂ Vi ⊂ Ui. As for any x ∈ X
there is 1 ≤ i ≤ k such that x ∈ Wi, by the first property of the previous
point we get

∑
1≤i≤k gi(x) ≥ 1 ∀x ∈ X;

(d) let Σ = g1+ ...+gk and fi =
gi
Σ
. By the previous point we have Σ(x) ̸= 0 ∀x ∈

X, so the fi’s are well defined and satisfy the support condition. By definition∑
1≤i≤k fi(x) = 1 ∀x ∈ X, so (fi)1≤i≤k is our partition of unity subordinate

the the covering (Ui)1≤i≤k.

(4) (a) Such a covering without the finiteness condition exists by definition of mani-
fold. As X is compact we can extract a finite subcovering, so we are done;

(b) it exists because X satisfies the hypotheses of the previous exercise, as you
saw in class that any compact Hausdorff space is normal.
fiϕi is continuous on Ui as the product of two continuous functions. As
Supp(fi) ⊂ Ui we have that for any open set U ⊂ X, U = (U ∩ Ui) ∪ (U ∩
(Supp(fi))

c), so we just need to prove that gi|Supp(fi))c is continuous, but by
definition gi is 0 on this open, so we are done;

(c) since for any x ∈ X there is 1 ≤ i ≤ k such that fi(x) ̸= 0 by definition of
partition of unity, if ϕ(x) = ϕ(y) then there is i such that fi(x) = fi(y) ̸= 0,
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so x, y ∈ Supp(fi) ⊂ Ui. But then having gi(x) = gi(y) and fi(x), fi(y) ̸= 0
implies ϕi(x) = ϕi(y), which, as ϕi is in particular bijective, implies x = y;

(d) ϕ is continuous as the preimage of an open set is the intersection of the finitely-
many preimages of each component, which are open sets as each component
is continuous. Moreover, this implies that ϕ maps compact sets into compact
sets; as a closed subset of X is compact, and a compact subset ofRN is closed,
we get that ϕ is closed, and hence open on its image. Being injective, this
implies it is a homeomorphism on the image.


