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as 7* is defined from a basis, it suffices to check that the latter is closed
under finite intersections (as clearly R € % and () is obtained by a empty
union), i.e. that both %; and %, are. We know it for %, as it is a basis for
the euclidean topology; the same is true for %, as the intersection of two of
its elements is the intersection of two elements of Z#; minus the set B, i.e. an
element of %, minus B, so an element of %,.

As the euclidean topology, generated by %, is Hausdorff, and .7* is finer
than that, it is also Hausdorff;

A is closed in the euclidean topology and so it is in Z*, while R\ B is
(—00,0) U ((—=1,1) \ B) U (1,00), with the second set belonging to %, and
the first and third to the euclidean topology, and hence to .7*; therefore, B
is closed;

as U € 7%, there are euclidean open intervals U;, ¢ € I in R such that
U= (;U;)NT with either T =R or T =R\ B. As0 € U, thereisi € |
such that 0 € U;, which implies the claim;

it suffices to take n > b~1;

1/n € V as B C V; hence, the same argument as for a,b gives ¢ < 1/n < d
so that (¢/,d’)\ B C V. Therefore, setting ¢ = max(c/, 25), d = min(d’, -17)
gives (¢, d) C V;

1
n+1’

we have x € V by e) and f). As also x ¢ B and 0 < z < 1/n by f), we get
x €U byc)as1/n<bbyd);
B is a closed set not containing 0, but we just proved that any two opens

U,V containing 0 and B respectively must intersect, so R with the topology
T™ is not regular, and hence not normal.

If p(x) = ¢(y) then for any continuous f : X — [0, 1] we have f(z) = f(y),
which implies x = y as the normality of X guarantees that we can otherwise
find such f with f(z) =0, f(y) = 1;

we verify this on the cofinite basis as usual: the preimage of some of open in
itis {xr € X : fi(x) € Uy, ..., fu(x) € U,} for some f;’s in . and U; C [0, 1].
But this is just the intersection of the f;'(U;), which is open;

as ¢ < 1/n and ¢ > any = € (¢, 1/n) works;

such a FSN is given by the intersection of a FSN for y in the product space
with Y. The former is given, in virtue of the definition of product topology,
(for example) by the usual cofinite neighborhoods {w € []; X : |wy, —yy,| <

¢;} for all j € J, as J and the ¢;’s vary as in the text of the exercise. As we
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intersect with ¢(X) we have w = ¢(z) for some z € X, so that wy, = f;(2)
by definition, from which the claim follows;

the existence of such V' is granted by the ”3bis” of the equivalent definitions
of normality we saw, applied to {x¢} and U¢. The existence of the map is

implied by the first of the equivalent definitions, that gives us a map such
that g(U°) = 0 (and g(x¢) = 1);

we just need to show that ¢ : X — Y is open: let y = ¢(xg) € ¢(U) for some
U C X open, we need to show that ¢(U) contains some set as those defined
in point ¢). Then taking g as in the previous point we have y, = g(x¢) = 1
and {|g(z) — g(zo)| < 1/2} C U, so we are done;

as [ [, Xy is compact by Tychonoff’s Theorem, we are done by the previous
point.

Let us prove the base step 7 = 1: we have that the complement C; of U; U
...UUy is a closed set contained in U; (as the U;’s form a covering). Therefore,
C1NUf =1, and, as X is normal, there are disjoint open sets V4 D Cy, Z; D
Uy, which means precisely that Vi C Uy. As C; C Vi, the latter satisfies
the required condition. The inductive step is the same of the base step: we
start from on open covering and we replace one of the sets, which the above
argument shows that we can choose arbitrarily, with a smaller open whose
closure is contained in the previous one. Doing it k times on the U;’s, we are
done;

first, we can extract W; from V; as we did V; from U; preserving the covering
condition. As X is normal and W; C V;, we know that there are functions
gi : X — [0,1] such that g;(W;) =1 and ¢;(X \ V;) = 0, so we are done;

as ¢;(X \'V;) =0 and V; C U; we have Supp(g;) C V; C U;. As for any z € X
there is 1 < ¢ < k such that x € W;, by the first property of the previous
point we get >, ;. gi(r) > 1 Vo € X

let ¥ = g1 +...+gr and f; = &. By the previous point we have 3(z) # 0 Vz €
X, so the f;’s are well defined and satisfy the support condition. By definition
Docicr filr) = 1 Vo € X, so (fi)i<i<k is our partition of unity subordinate
the the covering (U;)1<i<k.

Such a covering without the finiteness condition exists by definition of mani-
fold. As X is compact we can extract a finite subcovering, so we are done;

it exists because X satisfies the hypotheses of the previous exercise, as you
saw in class that any compact Hausdorff space is normal.

fi¢; is continuous on U; as the product of two continuous functions. As
Supp(f;) C U; we have that for any open set U C X, U = (UNU;) U(UN
(Supp(fi))¢), so we just need to prove that g;|supp(s,))e is continuous, but by
definition g; is 0 on this open, so we are done;

since for any = € X there is 1 < i < k such that f;(z) # 0 by definition of
partition of unity, if ¢(z) = ¢(y) then there is i such that f;(z) = f;(y) # 0,
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so x,y € Supp(f;) C U;. But then having g;(z) = ¢;(y) and f;(x), fi(y) # 0
implies ¢;(x) = ¢;(y), which, as ¢; is in particular bijective, implies = = y;

(d) ¢ is continuous as the preimage of an open set is the intersection of the finitely-
many preimages of each component, which are open sets as each component
is continuous. Moreover, this implies that ¢ maps compact sets into compact
sets; as a closed subset of X is compact, and a compact subset of R" is closed,
we get that ¢ is closed, and hence open on its image. Being injective, this
implies it is a homeomorphism on the image.



