## TOPOLOGY SPRING 2024 SOLUTIONS SERIE 11

We denote by $I$ the interval $[0,1]$
(1) (a) If $X=A \cup B$ with $A, B$ nonempty disjoint open sets, then taking $x \in A$, $y \in B$ and a path $\gamma$ from $x$ to $y$ we'd have that $I=\gamma^{-1}(A) \sqcup \gamma^{-1}(B)$, a disjoint union of nonempty (as $0 \in \gamma^{-1}(A), 1 \in \gamma^{-1}(B)$ ) open sets, which is absurd as $I$ is connected;
(b) symmetry is given by the constant path (which is always continuous), and if $\gamma$ is a path from $x$ to $y$ then $\gamma \circ h$ is a path from $y$ to $x$ where $h: I \longrightarrow I$ is given by $t \mapsto 1-t$. Finally, if $\gamma$ is a path from $x$ to $y$ and $\gamma^{\prime}$ is a path from $y$ to $z$ then the path $\eta= \begin{cases}\gamma \circ d & \text { if } t \leq 1 / 2 ; \\ \gamma^{\prime} \circ(d-1) & \text { if } t \geq 1 / 2 ;\end{cases}$
with $d: I \longrightarrow I, t \mapsto 2 t$ is a well defined - as both branches are continuous and give $y$ for $t=1 / 2$ - path from $x$ to $z$ (formulae aside, we simply "glued" the two paths);
(c) the equivalence class of $x$ is path-connected by definition, so it is connected by a). Again by (well-)definition of connected component, it thus must be contained in the connected component of $x$;
(d) let $C$ be the path-connected component of $x$ and let $y \in C$. We know that there is a homeomorphism $\phi: U \longrightarrow V$ from some open neighborhood of $y$ to some open $V \subset \mathbf{R}^{n}$. Let $w=\phi(y)$; then $V$ contains an open $n$-disk $D$ centered at $w$ (as those form a FSN), so $\phi$ restricts to a homeomorphism from $U_{1}=\phi^{-1}(D)$ to $D$. As $D$ is path-connected ( $\mathbf{R}^{n}$ is locally path-connected), $U_{1}$ is. Therefore, as $y \in U_{1}$ by construction, $U_{1} \subset C$ by b), hence we have proven that given $y \in C, C$ contains an open neighborhood of $y$, and hence is open;
(e) $X$ being contractible means precisely that $I d_{X}$ is homotopic to a constant map $x_{0}$ on $X$. But then there is $F: X \times I \longrightarrow X$ continuous so that $F(x, 0)=x, F(x, 1)=x_{0} \forall x \in X$; therefore, $\gamma_{x}(t)=F(x, t)$ is, for any $x \in X$, a path from $x$ to $x_{0}$. Again by b), this means that $x$ is path connected, as to get a path from $x$ to $y$ we can join one from $x$ to $x_{0}$ with one from $x_{0}$ to $y$.
(2) Let $P=(0,1)$.
(a) Observe that $C-\{P\}$ is connected (it is a comb with teeth at abscissae $1 / n)$ and that any open disk centered at $P$ intersects $C-\{P\}$ : if it has radius $\epsilon$, it contains $(1 / N, 1)$ for $N>\epsilon^{-1}$. Therefore, if $C$ was the union of disjoint nonempty open sets, both would intersect $C-\{P\}$, making it also disconnected, which is absurd;
(b) $\{P\}$ is closed in $C$ as it is closed in the euclidean topology, so its preimage is closed, and nonempty as it contains 0 ;
(c) $V$ is open in $C$ as its intersection with an open of $\mathbf{R}^{2}$ given by the same conditions. By the definition of continuity, as $\gamma\left(t_{0}\right)=P \in V$, there is an open $U \ni t_{0}$ such that $\gamma(U) \subset V$. As open intervals are a basis for the 1D euclidean topology, we can find an interval neighborhood of $t_{0}$ which is contained in $U$;
(d) it is as the continuous image of a connected set;
(e) let $\gamma((a, b))=G$. As $|y-1|<\epsilon<1 / 2, G$ does not intersect the real axis. So if we had $(1 / n, u) \in G$ for some $n \geq 1, u \leq 1$ (i.e. $G \neq\{P\}$ ), we could write $G=(G \cap D) \sqcup\left(G \cap \bar{D}^{c}\right)$ as the disjoint union of two nonempty open subsets - contradicting the previous question - where $D$ is the open disk centered at $(1 / n, u)$ of radius $\frac{1}{2 n}$. Indeed $D$ which does not contain $P$ but $\bar{D}^{c}$ does because of the radius length;
(f) we just proved that if $t_{0} \in Y$ then $Y$ contains an open neighborhood of $t_{0}$, so it is open;
(g) being also nonempty and closed, $Y$ must then be the whole space $I$ as the latter is connected.
(3) (a) Symmetry follows from the symmetry in $X, Y$ of the definition, and reflexivity is given by the identity map. Moreover, if $X$ and $Y$ have the same homotopy type via $f, g$ as in the text and $Y$ and $Z$ too via $h, l$, we get that $f_{1}=h \circ f$ : $X \longrightarrow Z$ and $g_{1}=g \circ l: Z \longrightarrow X$ are maps such that $g_{1} \circ f_{1}$ is homotopic to $I d_{X}$ and $f_{1} \circ g_{1}$ is homotopic to $I d_{Z}$, as we can perform just the homotopy that brings $l \circ h$ to $I d_{Y}$ for $t \in[0,1 / 2]$ by doubling the speed, and the one bringing $g \circ f$ to $I d_{X}$ for $t \in[1 / 2,1]$, obtaining an homotopy from $g_{1} \circ f_{1}$ to $I d_{X}$ (they glue because at $t=1 / 2$ we have reached an homotopy equivalence between $l \circ h$ and $I d_{Y}$, so that the map $Y \longrightarrow Y$ in the triangular diagram with $f$ and $g$ is precisely the identity, allowing us to work with $g \circ f$ ). The other direction is analogous;
(b) suppose we have two maps $g_{1}, g_{2}$ with that property. As we saw that we can compose homotopies, we have:

$$
g_{1} \sim g_{1} \circ I d_{Y} \sim g_{1} \circ\left(f \circ g_{2}\right) \sim\left(g_{1} \circ f\right) \circ g_{2} \sim I d_{X} \circ g_{2} \sim g_{2}
$$

(c) we proved this in a);
(d) $X$ has the homotopy type of $\left\{x_{0}\right\}$ iff there exists a map $g:\left\{x_{0}\right\} \longrightarrow X$ such that $g \circ f \sim I d_{X}$ where $f$ is the only map from $X$ to $\left\{x_{0}\right\}$. But then any such $g \circ f$ is exactly a constant map $X \longrightarrow X$, and we get precisely the definition of contractible space;
(e) in the first case, given a map $f: Y \longrightarrow X$ we can write $f \sim f \circ I d_{X} \sim f \circ f_{0}$ where $f_{0}: X \longrightarrow X$ is a constant map, as we proved that $X$ is contractible, giving the required homotopy from $f$ to a constant map $Y \longrightarrow X$. In the other
case we do the same thing but by composing the identity - and deforming it to a constant map - to the left of a map $g: X \longrightarrow Y$.
(4) (a) Let $i, \phi$ respectively be the inclusion and the group morphism of the text. For any $y_{0} \in Y, r: X \longrightarrow Y$ induces another group morphism $\psi: \pi_{1}\left(X, y_{0}\right) \longrightarrow$ $\pi_{1}\left(Y, y_{0}\right)$, and since $r \circ i=I d_{Y}$ we have that $\psi \circ \phi$, which is the morphism it induces on $\pi_{1}\left(X, y_{0}\right)$ by functoriality, is also the identity, so $\phi$ must be injective;
(b) we saw this in other terms on a previous sheet too: the projection of $x \in \mathbf{R}^{n}-$ $\{0\}$ to $S_{n-1}$ is continuous (the preimage of a small open "circle" $\left\{d\left(z_{0}, z\right)<\epsilon\right\}$ in $S_{n-1}$ is the open cone with tip in 0 it defines) and fixes the sphere, so it's a retraction;
(c) a) and b) give an injective homomorphism $\mathbf{Z} \simeq \pi_{1}\left(S_{1}, y_{0}\right) \hookrightarrow \pi\left(\mathbf{R}^{2}-\{0\}, y_{0}\right)$, so the latter cannot be trivial;
(d) if it was, we'd get an injective homomorphism $\mathbf{Z} \longrightarrow\{1\}$, which is absurd.
(5) (a) $g$ is the composition $(T \circ(f, I d))(z): D \longrightarrow S_{1}$ where $T: D^{2} \backslash \Delta \longrightarrow S_{1}$ is the map sending two distinct points in $D$ to the intersection of the line between them with $S_{1}$ (and $\Delta$ is the diagonal). $T$ is open, as given $\left(x_{0}, y_{0}\right)$ with $T\left(x_{0}, y_{0}\right)=P$ and an open neighborhood $U \ni P$ in $S_{1}$, there is $\epsilon>0$ such that the circular sector $(P-\epsilon, P+\epsilon)$ (in radians, say) lies in $U$, and we can definitely find $\delta>0$ such that for $x$ and $y$ in a open balls of radii $\delta$ around $x_{0}$ and $y_{0}$ respectively, the line between $x, y$ intersects the above circular sector (as we can bound the distance of its intersection with $S_{1}$ from that of the line between $x_{0}$ and $y_{0}$ linearly in terms of $\delta$ and the diameter of the circle - simply by definition of what a "line" is). Obviously $(f, I d): D \longrightarrow D^{2}$ is continuous as both component are, and its image is indeed contained in $D^{2} \backslash \Delta$ by the no-fixed-point hypothesis, so $g$ is well defined and continuous as the composition of continuous maps;
(b) above;
(c) having a continuous map $D \longrightarrow D$ which is the identity on $S_{1}$, we get that the latter is a retract of the former, so by Exercise 4 we get an injective morphism $\mathbf{Z} \simeq \pi_{1}\left(S_{1}\right) \hookrightarrow \pi_{1}(D) \simeq\{1\}$ (the last isomorphism as $D$ is contractible), which is absurd, so $f$ must have a fixed point.

