TOPOLOGY SPRING 2024
 SOLUTIONS SERIE 12

(1) (a) It suffices to notice that all points have a path to x_{0} as it lies in all circumferences and any point belongs to one of the circumferences;
(b) such a neighborhood contains the intersection of X with an open ball $B(0, \epsilon)$ of \mathbf{R}^{2} centred at the origin, so it contains C_{n} for $n>\frac{2}{\epsilon}$;
(c) let $U \subset C_{n}$ be open. If $x_{0} \notin U$ then $r_{n}^{-1}(U) \simeq U$ via the identity; otherwise, $r_{n}^{-1}(U)=U \cup\left(X \backslash C_{n}\right)=V$, so we need to prove that this union is open in X. Given any $P \in C_{n}^{c} \cap V, V$ contains any of neighborhood of P contained in its circle, whereas for $P \in C_{n} \cap V$ we can take U;
(d) as r_{n} is a retraction, the map $r_{n} \circ i: C_{n} \hookrightarrow X \longrightarrow C_{n}$ is the identity, so the induced map on fundamental groups must be too, and in particular the last arrow is surjective;
(e) it is well defined as for any t there is exactly one such n and $\gamma(0)=\gamma(1)=x_{0}$. γ is continuous on $[0,1)$ as each "segment" is (they are linear scalings of continuous loops) and substituting the extremes of the interval gives $\gamma_{n}(0)=$ $\gamma_{n-1}(1)=x_{0}$. Finally, it is also continuous at $t=1$ as any neighborhood of x_{0} contains a C_{n} by b), and hence its preimage contains $(t, 1]$ for $t>1-1 / n$;
(f) $r_{n *}$ sends the class of γ to the class of the loop that is constant for $t<$ $1-1 / n$, then γ_{n} at $n(n+1)$-times the speed, and then constant again. Linearly changing, from 0 to $1-1 / n$ the point (and consequently the speed) of when the loop starts following γ_{n} clearly describes an homotopy of it with γ_{n};
(g) we define the morphism as $r_{n *}$ component wise, and the previous point precisely tells us that given any element in the image, that is a collection $\left\{\left[\gamma_{n}\right], n \geq\right.$ $1\}$ with γ_{n} a loop at x_{0} in C_{n}, there is a class in the domain mapping precisely to that, so the morphism is surjective. As a countably infinite product of copies of $\mathbf{Z}, \pi_{1}\left(X, x_{0}\right)$ has therefore the cardinality of the continuum.
(2) (a) Let
$D=\left\{\delta \in(0,1]: \exists m \geq 1\right.$ and $0=t_{0}<\ldots<t_{m}=\delta$ with the property of the text $\}$
and let us show that D is clopen, which implies the statement. Surely D is nonempty and open, as if $\gamma(t) \in U_{i}$ then there is $\epsilon>0$ such that $\gamma([t, t+2 \epsilon)) \subset$ U_{i}, and hence $\gamma([t, t+\epsilon]) \subset U_{i}$, by continuity of γ. Also D is an interval by construction, so if it is not closed, there is $a \leq 1$ such that $D=(0, a)$. This means that for any $\epsilon>0$ and for all $a-\epsilon<b<a$ there are $m \geq 1$ and time intervals $0=t_{0}<\ldots<t_{m}=b$ with corresponding $\left\{U_{i(k)}, 0 \leq k<\right.$ $m\}$ satisfying the hypotheses with an index $i=i(m-1) \in I$ such that $\gamma([a-\epsilon, b]) \subset U_{i}$, but $\gamma(a) \notin U_{i}$. Then, since the U_{i} 's cover X, there is U_{j} such that $\gamma(a) \in U_{j}$; but U_{j} is also open, so there is $\mu>0$ such that
$\gamma([a-\mu, a+\mu]) \subset U_{j}$ by continuity as before. Therefore $a \in D$, since we can take $b \in(a-\mu, a)$ with the respective sequence of $t_{k}, 0 \leq k \leq m$ (U_{j} did not depend on b), and define $t_{m+1}=a$ and $U_{i(m)}=U_{j}$;
(b) we know that $x_{0} \in U_{i} \forall i \in I$ and that for $0 \leq k<m, \gamma\left(t_{k+1}\right) \in U_{i(k)} \cap U_{i(k+1)}$ with these intersections being path-connected, so for such k there is a path β_{k} from x_{0} to $\gamma\left(t_{k}\right)$ contained in the intersection. It is then natural to define γ_{k} as follows:

$$
\gamma_{k}(t)= \begin{cases}\beta_{k}(3 t) & \text { if } 0 \leq t \leq 1 / 3 \\ \gamma\left(t_{k}+3(t-1 / 3) t_{k+1}\right) & \text { if } 1 / 3 \leq t \leq 2 / 3 \\ \beta_{k+1}^{-1}(3 t-2) & \text { otherwise }\end{cases}
$$

then these are well-defined loops at x_{0} contained in $U_{i(k)}$, and they link to a path homotopic to γ, as the "links" $\beta_{k}^{-1}(3 t-2) \cdot \beta_{k}(3 t)$ are homotopic to the constant loop by definition of inverse, and the rest of the loop is already constructed as piece-wise homotopic to m paths that link to γ;
(c) given a loop γ at x_{0}, the previous point assures us that we can write γ as the composition of m loops γ_{k} at x_{0} each contained in one of the open sets U_{i}, which have trivial fundamental group. Therefore each of the γ_{k} is homotopic to the constant loop in $U_{i(k)}$, and hence in X, and so then must be γ.
(3) Take two distinct points $x, y \in \bigcup_{i \in I} A_{i}$, so let us say $x \in A_{j}, y \in A_{k}$; moreover, there exists $z \in \bigcap_{I} A_{i}$, so $z \in A_{j} \cap A_{k}$. As each A_{i} is path-connected, there exist paths from x to z and from z to y, and hence a path from x to y.
(a) $S_{2} \backslash\{p\}$ and $S_{2} \backslash\{q\}$ are path-connected as they are homeomorphic to the plane via stereographical projection from the missing "pole". As their intersection $S_{2} \backslash\{p, q\}$ is nonempty (it contains $(0,1,0)$), the previous Exercise immediately gives that S_{2} is path-connected. Then $S_{2} \backslash\{p, q\}$ must be too, as given two points x, y in it there is a path γ in S_{2} joining them, which we can take so that it does not contain any of the poles: for example, let U be a circular open neighborhood of p not containing x and y (S_{2} is Hausdorff), then if $\operatorname{Im}(\gamma) \cap U \neq \emptyset$ and $0 \leq u<v \leq 1$ are such that $\gamma(u), \gamma(v)$ are respectively the first and last intersection of γ with ∂U (which exist as γ is continuous and $x, y \notin U)$, then we can modify γ into a loop from x to y disjoint from U as follows: for $0 \leq t \leq u$ follow γ, then for $u \leq t \leq v$ follow (say, clockwise) ∂U in such a way that you are at $\gamma(v)$ at time v, and then follow γ again. The same process can be then done if necessary for a neighborhood V of q which can be taken as to not intersect ∂U so that the changes don't interfere, and we are done;
(b) both spaces are homeomorphic to the plane, which has trivial fundamental group;
(c) this follows directly from Exercise 2c), as $S_{2}=\left(S_{2} \backslash\{p\}\right) \cup\left(S_{2} \backslash\{q\}\right)$ and we proved that $S_{2} \backslash\{p\}$ and $S_{2} \backslash\{q\}$ have trivial fundamental group and that their intersection(s) are path connected.

