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(1) (a) By definition, there exists a neighborhood U of p(y) such that p−1(U) is
isomorphic to U ×D for D a discrete set, via the diagram seen in class. So
y is contained in an open V isomorphic to {d} × U for some d ∈ D, and the
restriction of f to V gives the required isomorphism;

(b) as X is connected and fibers are finite, it suffices to show that for any integer
k ≥ 1, the set Fk = {x ∈ X : |p−1(x)| = k} is open: indeed, if that is the
case, all these sets will also be closed, as Fk0 = X \ (

⋃
k ̸=k0

Fk), and hence
either empty or equal to X. As they are disjoint and cover X, we will have
X = Fk for some k, which is the thesis.
Openness follows easily from the definition: if x ∈ Fk, as we know that there
is a neighborhood U of x and a discrete set D such that f−1(U) ≃ U ×D in a
commutative diagram where U ×D maps to U via the canonical projection,
every point in U has fiber in bijection with D, and therefore of the same
cardinality of that of x.

(2) (a) All axioms defining a group action are symbolically satisfied as the identity
acts trivially and the action of a composition is given by composing the per-
mutations at the index;

(b) for n = 1 the action is trivial and hence gives the identity covering. For n ≥ 2,
the fiber above each point has finitely many elements: any equivalence class is
a Sn−orbit and hence has at most n! elements. MoreoverCn is connected, and
we have fibers of different cardinality: above the image of (x1, x2, ..., xn) with
x1 ̸= x2 we have both (x1, x2, ..., xn) and (x2, x1, ..., xn), whereas above the
diagonal (x, x, ..., x) we have fibers with one element. These things together
yield that p cannot be a covering by Exercise 1;

(c) permuting n distinct numbers gives n distinct numbers, so σUn = Un. Let p
be the projection, X = Un/Sn, x ∈ X and y1, ..., yn! its (distinct!) preimages.
Then, as Cn is Hausdorff, we can chose open neighborhoods Vi of yi that are
disjoint for i ̸= j. So U =

⋂n!
i=1 p(Vi) is an open neighborhood of x, whose

preimage is isomorphic to U×{1, ..., n!} precisely via the action of Sn, making
the relative diagram as seen in class commute.

(3) (a) The fibers of f are finite, as over a field the equation f(x) = a can have at
most d = deg f distinct solutions. So, by Exercise 1, if f was a covering, all
points would have fibers with the same cardinality: let us prove that for d ≥ 2
this is never the case. As a polynomial has distinct roots over C precisely
when it has no common roots with its derivative (this is a direct consequence
of the formula for the derivative of the product), we just need to show that
there are a, b ∈ C such that f − a has a common root with f ′ and f − b
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doesn’t (the derivatives of polynomials of the form f − constant are all f ′).
Let α1, ..., αd−1 be the (possibly not distinct) roots of f ′. Then saying that
f − a has αi as a root is the same as saying f(αi) = a, i.e. a ∈ Cf . As this
set has between 1 and n− 1 elements, we are done;

(b) it is an elementary fact of complex analysis that a function f holomorphic on
some open set U and whose derivative at z ∈ U is nonzero, is locally injective
around z. Since polynomials are holomorphic this applies, so by restricting
to some closed ball in the neighborhood around z where f is injective we get
a neighborhood Kz as in the hint: we are left to prove that f is a closed map
on Kz (as we can then take as Vz its inner part). Since f sends compact sets
to compact sets by continuity, our Kz is compact, and a closed subset of a
compact set is compact, we get that f restricted to Kz sends closed subsets
to compact subsets, which are closed as C is Hausdorff;

(c) we showed the part of the hint about the size of fibers in the first point. By
the second one, we can find neighborhoods Vz0 of the elements z0 of the fiber
over w0 over which f is a homeomorphism. Taking as usual the image of their
intersection, we get the desired trivialization.

(4) (a) we know that the projections from the cartesian product are continuous. As
the fibre product has the subspace topology, p1 and p2 are simply their restric-
tions, and hence also continuous. Given (x, y) ∈ Y ′, the identity g◦p1 = p◦p2
is equivalent to g(x) = p(y), which is the equation describing Y ′;

(b) the map is continuous as a map to a product space whose coordinate-maps are
continuous (one is the identity and the other one is the projection X×D −→
D), bijective because for any x ∈ X ′ there is y ∈ Y such that g(x) = p(y)
as p is surjective, and since y = (v, d0) for some v ∈ X, d0 ∈ D, we have
p((v, d)) = v = g(x) ∀d ∈ D =⇒ (x, (v, d)) ∈ Y ′ ∀d ∈ D by definition
of Y ′. The inverse map Ψ−1 : (x, d) 7→ (x, (vd, d)) is well-defined as given
x ∈ X ′, d ∈ D, if there were v1 ̸= v2 satisfying g(x) = p((v, d)) we’d have that
the projection restriction X × D ⊃ X × {d} −→ X wouldn’t be a injective
(and in particular a homeoomorphsim). It is continuous component-wise by
the same argument for Ψ (but using the projection X × D −→ X), and so
continuous, hence Ψ is a homeomorphism;

(c) for a general covering p, we have an open cover (Ui)i∈I of X such that pi :=
p|p−1(Ui) is a trivial covering for all i ∈ I, giving a corresponding collection of
homeomorphisms Ψi : (p

−1(Ui))
′ −→ g−1(Ui)×Di thanks to b). The g

−1(Ui)’s
then form a cover of X ′ that gives the required local trivialization;

(d) by definition of the fibre product we have p−1
1 ({x}) ←→ {y ∈ Y : p(y) =

g(x)} = p−1(g(x)).

(5) (a) The fiber of the pullback above x ∈ S1 = X ′ is {(x, y) : y ∈ S1 = Y : yn =
xn} = {ζknx, k = 0, ..., n − 1} by identifying the two copies of S1, where ζn
is any primitive n-th root of unity. Therefore, p1 : Y ′ −→ X ′ is isomorphic
to the projection X ′ × D −→ X ′ for D = {1, ζ, ..., ζn−1} a discrete set of n
elements;
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(b) by definition of p1 we have p1 ◦ q(z) = z2 = f2(z).


