TOPOLOGY SPRING 2024 SOLUTIONS SERIE 13

- (1) (a) By definition, there exists a neighborhood U of p(y) such that $p^{-1}(U)$ is isomorphic to $U \times D$ for D a discrete set, via the diagram seen in class. So y is contained in an open V isomorphic to $\{d\} \times U$ for some $d \in D$, and the restriction of f to V gives the required isomorphism;
 - (b) as X is connected and fibers are finite, it suffices to show that for any integer $k \ge 1$, the set $F_k = \{x \in X : |p^{-1}(x)| = k\}$ is open: indeed, if that is the case, all these sets will also be closed, as $F_{k_0} = X \setminus (\bigcup_{k \ne k_0} F_k)$, and hence either empty or equal to X. As they are disjoint and cover X, we will have $X = F_k$ for some k, which is the thesis.

Openness follows easily from the definition: if $x \in F_k$, as we know that there is a neighborhood U of x and a discrete set D such that $f^{-1}(U) \simeq U \times D$ in a commutative diagram where $U \times D$ maps to U via the canonical projection, every point in U has fiber in bijection with D, and therefore of the same cardinality of that of x.

- (2) (a) All axioms defining a group action are symbolically satisfied as the identity acts trivially and the action of a composition is given by composing the permutations at the index;
 - (b) for n = 1 the action is trivial and hence gives the identity covering. For $n \ge 2$, the fiber above each point has finitely many elements: any equivalence class is a S_n -orbit and hence has at most n! elements. Moreover \mathbb{C}^n is connected, and we have fibers of different cardinality: above the image of $(x_1, x_2, ..., x_n)$ with $x_1 \ne x_2$ we have both $(x_1, x_2, ..., x_n)$ and $(x_2, x_1, ..., x_n)$, whereas above the diagonal (x, x, ..., x) we have fibers with one element. These things together yield that p cannot be a covering by Exercise 1;
 - (c) permuting n distinct numbers gives n distinct numbers, so $\sigma U_n = U_n$. Let p be the projection, $X = U_n/S_n$, $x \in X$ and $y_1, ..., y_{n!}$ its (distinct!) preimages. Then, as \mathbb{C}^n is Hausdorff, we can chose open neighborhoods V_i of y_i that are disjoint for $i \neq j$. So $U = \bigcap_{i=1}^{n!} p(V_i)$ is an open neighborhood of x, whose preimage is isomorphic to $U \times \{1, ..., n!\}$ precisely via the action of S_n , making the relative diagram as seen in class commute.
- (3) (a) The fibers of f are finite, as over a field the equation f(x) = a can have at most $d = \deg f$ distinct solutions. So, by Exercise 1, if f was a covering, all points would have fibers with the same cardinality: let us prove that for $d \ge 2$ this is never the case. As a polynomial has distinct roots over \mathbf{C} precisely when it has no common roots with its derivative (this is a direct consequence of the formula for the derivative of the product), we just need to show that there are $a, b \in \mathbf{C}$ such that f a has a common root with f' and f b

doesn't (the derivatives of polynomials of the form f – constant are all f'). Let $\alpha_1, ..., \alpha_{d-1}$ be the (possibly not distinct) roots of f'. Then saying that f - a has α_i as a root is the same as saying $f(\alpha_i) = a$, i.e. $a \in C_f$. As this set has between 1 and n - 1 elements, we are done;

- (b) it is an elementary fact of complex analysis that a function f holomorphic on some open set U and whose derivative at $z \in U$ is nonzero, is locally injective around z. Since polynomials are holomorphic this applies, so by restricting to some closed ball in the neighborhood around z where f is injective we get a neighborhood K_z as in the hint: we are left to prove that f is a closed map on K_z (as we can then take as V_z its inner part). Since f sends compact sets to compact sets by continuity, our K_z is compact, and a closed subset of a compact set is compact, we get that f restricted to K_z sends closed subsets to compact subsets, which are closed as \mathbf{C} is Hausdorff;
- (c) we showed the part of the hint about the size of fibers in the first point. By the second one, we can find neighborhoods V_{z_0} of the elements z_0 of the fiber over w_0 over which f is a homeomorphism. Taking as usual the image of their intersection, we get the desired trivialization.
- (4) (a) we know that the projections from the cartesian product are continuous. As the fibre product has the subspace topology, p_1 and p_2 are simply their restrictions, and hence also continuous. Given $(x, y) \in Y'$, the identity $g \circ p_1 = p \circ p_2$ is equivalent to g(x) = p(y), which is the equation describing Y';
 - (b) the map is continuous as a map to a product space whose coordinate-maps are continuous (one is the identity and the other one is the projection $X \times D \longrightarrow D$), bijective because for any $x \in X'$ there is $y \in Y$ such that g(x) = p(y)as p is surjective, and since $y = (v, d_0)$ for some $v \in X, d_0 \in D$, we have $p((v, d)) = v = g(x) \ \forall d \in D \Longrightarrow (x, (v, d)) \in Y' \ \forall d \in D$ by definition of Y'. The inverse map $\Psi^{-1} : (x, d) \mapsto (x, (v_d, d))$ is well-defined as given $x \in X', d \in D$, if there were $v_1 \neq v_2$ satisfying g(x) = p((v, d)) we'd have that the projection restriction $X \times D \supset X \times \{d\} \longrightarrow X$ wouldn't be a injective (and in particular a homeoomorphism). It is continuous component-wise by the same argument for Ψ (but using the projection $X \times D \longrightarrow X$), and so continuous, hence Ψ is a homeomorphism;
 - (c) for a general covering p, we have an open cover $(U_i)_{i \in I}$ of X such that $p_i := p|_{p^{-1}(U_i)}$ is a trivial covering for all $i \in I$, giving a corresponding collection of homeomorphisms $\Psi_i : (p^{-1}(U_i))' \longrightarrow g^{-1}(U_i) \times D_i$ thanks to b). The $g^{-1}(U_i)$'s then form a cover of X' that gives the required local trivialization;
 - (d) by definition of the fibre product we have $p_1^{-1}(\{x\}) \longleftrightarrow \{y \in Y : p(y) = g(x)\} = p^{-1}(g(x)).$
- (5) (a) The fiber of the pullback above $x \in S_1 = X'$ is $\{(x, y) : y \in S_1 = Y : y^n = x^n\} = \{\zeta_n^k x, k = 0, ..., n 1\}$ by identifying the two copies of S_1 , where ζ_n is any primitive *n*-th root of unity. Therefore, $p_1 : Y' \longrightarrow X'$ is isomorphic to the projection $X' \times D \longrightarrow X'$ for $D = \{1, \zeta, ..., \zeta^{n-1}\}$ a discrete set of *n* elements;

(b) by definition of p_1 we have $p_1 \circ q(z) = z^2 = f_2(z)$.