TOPOLOGY SPRING 2024

SOLUTIONS SERIE 2

Given a metric space (M, d) we use the notation $B(x, r)$ for the subset $\{y \in M$: $d(x, y)<r\}$, where both M and d are going to be left implicit if there is no ambiguity.
(1) (a) Let \mathscr{T}_{1} and \mathscr{T}_{2} be the topologies defined by d_{1} and d_{2}. It clearly suffices to show that the first inequality implies that $\mathscr{T}_{1} \subset \mathscr{T}_{2}$, i.e. that an open set for d_{1} is open also for d_{2}. Let $\emptyset \neq U \in \mathscr{T}_{1}$ and $x \in U$: we want to prove that there exists $\epsilon>0$ such that $B_{d_{2}}(x, \epsilon) \subset U$; by hypothesis, there exists $\delta>0$ such that $B_{d_{1}}(x, \delta) \subset U$, and by the first inequality we have $B_{d_{2}}(x, r) \subset B_{d_{1}}\left(x, r^{a}\right)$ for any $r \geq 0$, so we get the desired claim for $\epsilon=\delta^{a^{-1}}$;
(b) $\delta(x, y)$ is clearly non negative and is 0 exactly when the numerator $d(x, y)$ is 0 , so when $x=y$. Moreover, it is symmetric as it depends only on d, which is symmetric. Finally, we have:

$$
\begin{array}{r}
\delta(x, y)+\delta(y, z)=\frac{d(x, y)+d(y, z)+2 d(x, y) d(y, z)}{1+d(x, y)+d(y, z)+d(x, y) d(y, z)} \geq \\
\geq \frac{d(x, y)+d(y, z)+2 d(x, y) d(y, z)}{1+d(x, y)+d(y, z)+2 d(x, y) d(y, z)}= \\
=\left(1+\frac{1}{d(x, y)+d(x, z)+2 d(x, y) d(y, z)}\right)^{-1} \geq \\
\geq\left(1+\frac{1}{d(x, y)+d(y, z)}\right)^{-1} \geq \\
\geq\left(1+\frac{1}{d(x, z)}\right)^{-1}=\delta(x, z)
\end{array}
$$

Clearly $\delta(x, y) \leq d(x, y)$ for all x, y so $\mathscr{T}_{\delta} \subset \mathscr{T}_{d}$ by the proof of point a) with $a=1$. So let us prove the other inclusion: let $U \in \mathscr{T}_{d}$ and let $x \in U$, for which we know there exists $\epsilon>0$ such that $B_{d}(x, \epsilon) \subset U$. Observe that the function $t \mapsto \frac{t}{1+t}$ is continuous and monotonically increasing in a right neighborhood of 0 , so for small enough ϵ there exists $\gamma=\gamma(\epsilon)$ such that $f(t)<\gamma \Longleftrightarrow t<\epsilon$, and in particular $\gamma=\frac{\epsilon}{1+\epsilon}$. So we obtain that $B_{d}(x, \epsilon)=B_{\delta}(x, \gamma)$, which gives the desired inclusion. Clearly $\delta(x, y)<1$ as $d(x, y)<1+d(x, y)$.
(2) (a) δ is clearly nonnegative, and for it to be 0 we must be in the first case (as otherwise one of x and y is nonzero and so $\delta(x, y)$ is positive), so it is zero precisely when d is. Symmetry also immediately follows from that of d. Let us verify the triangle inequality: if x, y, z are all proportional, we are in the first case and the result is simply the triangle inequality for d; otherwise either x and y or y and z are not proportional, say WLOG $x \notin \mathbf{R} y$, so we have $\delta(x, z) \leq d(x, 0)+d(0, z) \leq d(x, 0)+d(0, y)+d(y, z)=\delta(x, y)+\delta(y, z)$, where the first inequality follows from the definition and the triangle inequality for
d applied to the triple $(x, 0, y)$, and the second from the triangle inequality for d applied to $(0, y, z)$;
(b) Let $P=\left(x_{0}, y_{0}\right)$. If $P=0$ is the origin then $B_{\delta}(0, r)$ is the open disk of radius r and centre 0 , as any point is proportional with 0 ; otherwise, $B_{\delta}(P, r)$ consists of the open segment (i.e. with the extrema removed) of centre P and length $2 r$ lying on the line between P and the origin, along with the open disk of radius $\max \left(0, r-\sqrt{x_{0}^{2}+y_{0}^{2}}\right)$ centred at the origin;
(c) This again follows by the fact that $d_{\text {eucl }} \leq \delta$ and exercise 1 a);
(d) Thanks to point b) we know that for example $B((1,1), 1)$, which is open for δ, is an open segment in \mathbf{R}^{2}, which is not open in the euclidean topology as balls are 2-dimensional.
(3) (a) As in the discrete topology every subset is open, the openness of singletons follows. In the other direction, let $U \subset X$ be any set, then $U=\cup_{x \in U}\{x\}$ is open as the union of open sets;
(b) Define $d(x, y)= \begin{cases}0 & \text { if } x=y, \\ 1 & \text { else }\end{cases}$

This is a distance: the only nontrivial property is the triangle inequality, which reduces to $0 \leq 0$ if $x=y=z$, to $1 \leq 1$ if $x=y \neq z$ or $x \neq y=z$, to $0 \leq 2$ if $x=z \neq y$ and to $1 \leq 2$ in the case in which they are three distinct points. With its induced topology the singletons are open as $x=B_{d}(x, r)$ for any $0<r<1$, and so \mathscr{T}_{d} is the discrete topology by the previous point;
(a) to verify that t is well defined we just need to check that $t\left(\left(x_{i}\right)\right) \in[0,1] \forall\left(x_{i}\right) \in$ C (the power series is clearly convergent as the coefficients are in $\{0,1\}$); but from the geometric series formula (and the nonnegativity of the x_{i}) we have $0 \leq t\left(\left(x_{i}\right)\right) \leq 2 \sum_{n \geq 1} 3^{-n}=2\left(\left(1-\frac{1}{3}\right)^{-1}-1\right)=1$.
To show injectivity we can drop the factor of 2 and show that $t / 2$ is injective. If we take $\left(x_{i}\right),\left(y_{i}\right)$ with $\left(x_{i}\right) \neq\left(y_{i}\right)$, there is the smallest index n where they differ, so say WLOG $x_{n}=0, y_{n}=1$. But then we will have, again from the geometric series formula,
$t\left(\left(y_{i}\right)\right)-t\left(\left(x_{i}\right)\right) \geq\left(\frac{y_{n}}{3^{n}}-\frac{x_{n}}{3^{n}}\right)-\sum_{i \geq n+1} 3^{-i}=3^{-n}-\frac{3^{-(n+1)}}{1-3^{-1}}=\frac{3^{-n}}{2}>0$.
Finally, let $V \subset[0,1]$ be open: we need to show that for any sequence $\left(x_{i}\right)$ in $U=t^{-1}(V)$ there is a finite set of indeces I such that U contains the sequences that match $\left(x_{i}\right)$ for the indeces in I. Let $t\left(\left(x_{i}\right)\right)=\alpha \in V$; then there is $\epsilon>0$ such that $B(\alpha, \epsilon) \cap[0,1] \subset V$ with the ball taken as a subset of \mathbf{R} with the euclidean metric; the need for intersecting with $[0,1]$ only comes from the case where $\alpha \in\{0,1\}$, otherwise the ball would entirely be contained in $[0,1]$. So we can suppose WLOG that $\alpha+[0, \epsilon) \subset U$ and $\alpha \neq 1 \Longleftrightarrow x \neq(1,1,1, \ldots)$ (as this latter case has $\alpha-[0, \epsilon) \subset V$ and is equivalent to ours with $\alpha=0$). But then, taking $N=N(\epsilon)$ such that $2 \sum_{n>N} 3^{-n}<\epsilon$, so any $N>\log _{3}\left(\epsilon^{-1}\right)$, implies that if $y_{i}=x_{i}$ for $i \in\{1, \ldots, N\}$ then $t\left(\left(y_{i}\right)\right) \in V$;
(b) as the hint suggests, if $x \in[0,1] \backslash t(C)$ then we cannot write $x=\sum_{n \geq 1} \frac{b_{n}}{3^{n}}$ with $b_{n}=2 x_{n} \in\{0,2\}$ for any $\left(x_{i}\right) \in C$, but x has a base- $\frac{1}{3}$ expansion, which then has to be $x=\sum_{n \geq 1} \frac{a_{n}}{3^{n}}$ with at least one $a_{n}=1$. Let us show that there is $\epsilon=\epsilon(x)>0$ such that all $y \in B(x, \epsilon) \cap[0,1]$ share the same property: this will prove that the complement of $t(C)$ is open. As in the previous point, this boils down to the fact (which we proved above) that if n is the smallest index where two sequences in C differ, then the base- $\frac{1}{3}$ power series constructed from them differ of at least $3^{-n} / 2$. Now, the sequence ($\frac{a_{i}}{2}$) is not in C precisely because $a_{n}=1$, but the exact same argument proves that the power series constructed from it must differ from any with $x_{i} \in\{0,1\} \forall i$ of at least $3^{-n} / 4$, and so $\left|x-t\left(\left(x_{i}\right)\right)\right| \geq \frac{3^{-n}}{2} \forall\left(x_{i}\right) \in C$ and hence $\epsilon=3^{-n} / 2$ works;
(c) to show that t^{-1} is continuous from the image to C we just need to prove that if $U \subset C$ is open then $t(U) \subset t(C)$ is open in the subspace topology. Let $x=t\left(\left(x_{i}\right)\right),\left(x_{i}\right) \in U$. As U is open there is I finite such that the sequences in C that agree with $\left(x_{i}\right)$ on I are in U. But by the argument of a) there is $\epsilon=\epsilon(I)$ such that all sequences $\left(y_{i}\right)$ with $\left|t\left(\left(y_{i}\right)\right)-x\right|<\epsilon$ must agree with $\left(x_{i}\right)$ on I (just take $\epsilon=3^{-\max (I)-1}$), so $B(x, \epsilon) \cap t(C) \subset t(U) \Longrightarrow t(U)$ is open.

